
3GPP TS 33.110 V1.0.0 (2006-06)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Services and System Aspects

Key establishment between a UICC and a terminal;

(Release 7)

[image: image1.jpg]K oy

The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

<keyword[, keyword]>

3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

Contents

4Foreword

Introduction
4
1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
5
3.1
Definitions
5
3.2
Symbols
6
3.3
Abbreviations
6
4
Key Establishment between a UICC and a Terminal
6
4.1
Reference model
6
4.2
Network elements
7
4.3.2
NAF Key Center
7
4.3
Key establishment architecture and reference points
8
4.3.1
Reference point Ub
8
4.4.2
Reference point Ua
8
4.4
General requirements and principles for key establishment between a UICC and a Terminal
8
4.4.1
Requirements on the Terminal
8
4.4.2
Requirements on the UICC Hosting Device
8
4.4.3 Requirements on the UICC
9
4.4.4 Requirements on the NAF Key Center
9
4.4.5 Requirements on Ks_local key and associated parameters handling
9
4.5
Procedures
10
4.5.1
Initiation of key establishment between a UICC and a Terminal
10
4.5.2 Key establishment procedure
10
Annex A (informative): Pending issues
13
A.1
Questions on UICC-ME channel protection
13
A.2
UICC-ME secure interface open issues
13
A.2.1
Use of TLS for key transport from network to ME
13
A.2.2
Terminal authentication
13
Annex B (normative): Key Derivation Function definition
16
B.1
 Ks_local key derivation in key establishment
16
Annex C (informative): Change history
17

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

Introduction

The smart card, tamper resistant device, has a primary role of storing credentials and performing sensitive cryptographic computations, it also provides portability of the user credentials. The smart card is rarely a stand-alone device; it usually interacts with a terminal. Sensitive applications are often split between a smart card and a terminal with sensitive data exchanged between the two. Therefore, the need to establish a secure channel between a UICC and a terminal that may host the UICC or be connected to the device hosting the UICC via a local interface has been identified by different standardization groups in order to protect the communication between the UICC and the terminal.

This document describes key establishment between a UICC and a terminal.
1
Scope

The present document describes the security features and mechanisms to provision a shared key between a UICC and a terminal that may host the UICC or be connected to the device hosting the UICC via the local interface. Candidate applications to use this key establishment mechanism include but are not restricted to secure channel between a UICC and a terminal.

The scope of this specification includes an architecture overview and the detailed procedure how to establish the shared key between the UICC and the terminal.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; Vocabulary for 3GPP Specifications".

[2]
3GPP TS 31.101: "3rd Generation Partnership Project; Technical Specification Group Terminals; UICC-terminal interface; Physical and logical characteristics".

[3]
3GPP TS 33.220: "Generic Authentication Architecture (GAA); Generic Bootstrapping Architecture".

[4]
3GPP TS 22.259: "Service Requirements for Personal Network Management; Stage 1".

[5]
IETF RFC 2246 (1999): "The TLS Protocol Version 1".

[6]
IETF RFC 3546 (2003): "Transport Layer Security (TLS) Extensions".

[7]
3GPP TS 33.222: "Generic Authentication Architecture (GAA); Access to network application function using Hypertext Transfer Protocol over Transport Layer Security HTTPS".
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [1].
NAF Key Center:
Dedicated NAF in charge of performing the key establishment between a UICC and a Terminal.

UICC Hosting Device: The entity, which is physically connected to the UICC. The UICC Hosting Device may be the MT or the ME.

Terminal:
For the purposes of the present document, the term Terminal denotes a trusted device that can establish a shared key with a UICC. The Terminal may be part of the UICC Hosting Device or a physically separated component (e.g. PNE as defined in TS 22.259 [4]).

Remote Terminal: A Terminal that is physically separated from the UICC Hosting Device.

NOTE:
The definition of trusted devices is out of the scope of the specification. It is assumed that the home network can decide whether a terminal is trusted or not.

Editor’s note:
Some examples of trusted devices may be included.
ICCID:
ICCID is the identifier of the smart card.

Editor’s note:
The use of ICCID as smart card Identifier has to be confirmed.

Terminal_appli_ID:
It identifies an application in a Terminal. Terminal_appli_ID is an octet string.
Terminal_ID:
It identifies uniquely the Terminal. The Terminal_ID of a ME is the IMEI.

NOTE:
In case that the Terminal is not a ME the definition of the type of Terminal_IDs is out of the scope of the specification.
UICC_appli_ID:
It uniquely identifies an application in the UICC. The UICC_appli_ID is an octet string.

3.2
Symbols

For the purposes of the present document, the following symbols apply:

Editor’s note:
It is for further studies, if special symbols are needed.

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

B-TID
Bootstrapping Transaction Identifier

BSF
Bootstrapping Server Function

GBA
Generic Bootstrapping Architecture

GBA_ME
ME-based GBA

GBA_U
GBA with UICC-based enhancements

ICCID
Integrated Circuit Card Identification

KDF
Key Derivation Function

Ks_ext_NAF
Derived key in GBA_U

Ks_int_NAF
Derived key in GBA_U, which remains on UICC

Ks_local
Derived key, which is shared between a Terminal and a UICC

NAF
Network Application Function

PNE
Personal Network Element

SLF
Subscriber Locator Function

USS
User Security Setting
4
Key Establishment between a UICC and a Terminal

4.1
Reference model

GBA_U [3] is used to provision a shared key between a UICC and a Terminal (i.e. Ks_local). The GBA_U key Ks_int_NAF is used by the UICC and the NAF to derive Ks_local. The NAF securely delivers Ks_local to the Terminal through a TLS tunnel, which is established between the NAF and the Terminal.

Figure 4.1 and figure 4.2 show a network model of the entities that utilize the bootstrapped secrets, and the reference points used between them. In figure 4.1 the Terminal is part of the UICC Hosting Device whereas in figure 4.2 the Terminal is connected to the UICC Hosting Device.

[image: image2.wmf]

HSS

BSF

Ua

Zh

Zn

SLF

Dz

UICC

UICC Hosting Device

Ub

NAF

Figure 4.1: High level reference mode (the Terminal is part of the UICC Hosting Device)

[image: image3.wmf]

HSS

BSF

Ua

Zh

Zn

SLF

Dz

Remote

 Terminal

Ub

Ub

NAF

UICC

UICC

Hosting

Device

Figure 4.2: High level reference mode (the Remote Terminal is connected to the UICC Hosting Device)

4.2
Network elements

4.3.2
NAF Key Center

The NAF Key Center is the NAF in charge of performing the Key Establishment between a UICC and a Terminal.
4.3
Key establishment architecture and reference points

This document is based on the architecture specified in TS 33.220 [3]. The Reference Points that are not explained in this section can be found in TS 33.220 [3].

4.3.1
Reference point Ub

The reference point Ub is implemented between the UICC Hosting Device and the BSF as described in TS 33.220 [3]. The UICC Hosting Device runs the HTTP Digest AKA protocol. This allows the UICC and the BSF to generate the bootstrapping key Ks.

4.3.2
Reference point Ua

The reference point Ua is used to deliver Ks_local and the associated parameters to the Terminal.
4.4
General requirements and principles for key establishment between a UICC and a Terminal

The following requirements and principles are applicable to the procedure for key establishment between a UICC and a Terminal:

· The Terminal and the UICC shall be able to establish a shared key;

· The Terminal shall be trusted;

NOTE:
The definition of trusted terminal is out of scope of the specification. The terminal may be compliant to requirements defined in TCG specifications or 3GPP SA3 Technical Report on “Trust Requirements for Open platforms in 3GPP”.

· The shared key to establish between the UICC and the Terminal shall not be exchanged unencrypted on the interface between the UICC and the Terminal;

· The Terminal and the network shall be able to authenticate each other;

· The server implementing the key establishment function needs to be trusted by the home operator to handle the authentication parameters and the shared key;

· The home network shall be able to control whether this Terminal is authorized to establish a shared key with the UICC for both symmetric and asymmetric protocols;

· In the case of asymmetric key authentication, the UICC shall be able to rely on its home network infrastructure to validate the Terminal certificate;

· The procedure for the key establishment between a UICC and a Terminal shall be access independent;

· To the extent possible, existing protocols and infrastructure should be reused;

4.4.1
Requirements on the Terminal

The Terminal shall support certificate-based mutual authentication as defined in IETF RFC 2246 [5] and IETF RFC 3546 [6]. Furthermore, the Terminal shall be equipped with a valid Client Certificate.
4.4.2
Requirements on the UICC Hosting Device

The UICC Hosting Device shall implement GBA_U as defined in TS 33.220 [3].
4.4.3 Requirements on the UICC

The UICC shall implement GBA_U as defined in TS 33.220 [3].

The UICC shall be capable of deriving Ks_local from Ks_int_NAF.

It shall be possible that the UICC implements a local policy to restrict the key establishment based on targeted UICC and Terminal applications (i.e. based on Terminal_appli_ID / UICC_appli_ID pair value).

4.4.4 Requirements on the NAF Key Center
The NAF Key Center shall support certificate-based mutual authentication as defined in IETF RFC 2246 [5] and IETF RFC 3546 [6].

Editor’s note:
In addition to certificate-based authentication, another option might be defined
The NAF Key Center shall be capable of determining whether a Terminal is trusted or not.

The NAF Key Center shall implement GBA_U as defined in TS 33.220 [3].

The NAF Key Center dedicated to the Key Establishment Mechanism shall be located in the operator’s Home Network.

The NAF Key Center shall be capable of deriving Ks_local from Ks_int_NAF.

It shall be possible to configure the NAF Key Center to restrict the key establishment based on the targeted UICC and Terminal applications (i.e. based on Terminal_appli_ID / UICC_appli_ID pair value). The key establishment indication given in the USS shall overrule the local policy on the NAF. Key Center.

4.4.5 Requirements on Ks_local key and associated parameters handling

The established key Ks_local may be either a key shared between the UICC and the Terminal as monolithic devices or between a specific application on the UICC and a specific application on the Terminal. Ks_local "per platform" refers to Ks_local shared between the UICC and the Terminal as monolithic devices, Ks_local "per application" refers to Ks_local shared between a specific application on the UICC and a specific application on the Terminal.

A Ks_local counter is associated to each key Ks_local established. After the derivation of Ks_local in the UICC, the UICC associates a dedicated counter "Ks_local counter" set to a default value. Each time that the UICC Ks_local-based application uses Ks_local for a cryptographic computation, the UICC shall decrease by one the associated Ks_local counter.

Ks_local is invalidated when Ks_local counter reaches null value.

Editor’s note:
The means to update counter value has to be further studied

The home operator may update Ks_local counter value by means of OTA commands. The description of the OTA mechanism is out of the scope of this TS.

The Terminal shall delete Ks_local and the corresponding parameters (e.g.ICCID, Terminal_appli_ID, UICC_appli_ID) when at least one of the conditions below is met:

1-
The key lifetime of Ks_local expires;

2-
The Terminal detects that the UICC has been removed;

3-
The Terminal detects that another UICC has been inserted; For this, the Terminal needs to store in non-volatile memory the last inserted UICC-identity to be able to compare that with the used UICC-identity during the initialisation procedures;

Ks_local may be deleted from the Terminal when the Terminal is powered down. If the Terminal does not delete Ks_local at power down then Ks_local together with the associated parameters (e.g. key lifetime and B-TID) shall be stored in trusted non-volatile memory.

Editor’s note:
One way to have trusted non-volatile memory may be achieved by tamper-resistant hardware.

4.5
Procedures

4.5.1
Initiation of key establishment between a UICC and a Terminal

Before Ks_local-based application can start, the UICC and the Terminal first have to share the same key Ks_local associated to the selected application. The Terminal shall check if it stores the key Ks_local associated to targeted application and if this key Ks_local is also available on the UICC.

1- The Terminal checks if it stores the key Ks_local required for the application communicating with the UICC. If the key Ks_local is not available on the Terminal then the Terminal initiates a Key Establishment procedure, else it continues the checks in step 2.

2- The Terminal sends a request to the UICC to check that the required key Ks_local is available on the UICC. The UICC reply indicates the Terminal if the required key Ks_local is available on the UICC. If the required key Ks_local is not available on the UICC, the Terminal initiates a key establishment procedure.
4.5.2 Key establishment procedure

1- The Terminal checks whether there is a valid Ks key in the UICC, by fetching the current B-TID and its corresponding lifetime from the UICC. If no valid key Ks is available in the UICC, the Terminal requests a GBA bootstrapping procedure run to derive a new Ks key in the UICC and the BSF.
2- In order to check whether there is a valid Ks_int_NAF, the Terminal sends a request to the UICC to retrieve B-TID value associated to the NAF_ID of the NAF Key Center.
Editor’s note:
The NAF_ID of the NAF Key Center has to be known by the Terminal.
3- The UICC returns the NAF_ID and associated B-TID to the Terminal. If there is no Ks_int_NAF available in the UICC, a GBA_U NAF Derivation procedure associated to the NAF Key Center is performed.
4- The Terminal sends a command to perform Ks_local derivation on the UICC. The Terminal sends the NAF_ID corresponding to the NAF Key Center, the Terminal_ID, the Terminal_appli_ID and the UICC_appli_ID. Terminal_appli_ID and UICC_appli_ID correspond to identifiers of applications that aim sharing a key Ks_local.

In case that Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".
5- The UICC retrieves the Ks_int_NAF associated to the received NAF_ID and then derives Ks_local. The UICC stores Ks_local and associated parameters Terminal_ID, Terminal_appli_ID, UICC_appli_ID and Ks_local counter. Ks_local counter is set to COUNT_MAX default value if Ks_local corresponds to a new key value.

Ks_local is computed as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID), where KDF is the key derivation function as specified in Annex B.

The UICC may store a local policy to determine the associations between a Terminal_appli_ID and a UICC_appli_ID wich are authorized. If the Terminal requested a Terminal_appli_ID/UICC_appli_ID association not authorized by the UICC policy then the UICC stops the key establishment procedure and returns a "not authorized" error message.
6- The Terminal and the NAF Key Center establish a HTTPS tunnel with certificate based mutual authentication between the Terminal and the application server. Confer TS 33.222 [7].
Editor’s note:
In addition to certificate-based authentication, another option might be defined
7- The Terminal sends a "service request" message to the NAF Key Center node in the mobile operator network. The message is sent within HTTPS tunnel.

The request may contain the following payload: the identity (B_TID), the Terminal identifier (Terminal_ID), the smart card identifier (ICCID), and the application identifier of UICC application (UICC_appli_ID) and the application identifier of the Terminal application (Terminal_appli_ID) requiring the establishment of key Ks_local.

In case that Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".
8- The NAF Key Center contacts the BSF and sends the identity B_TID, the NAF_ID of the NAF Key Center, the identifiers of the targeted applications (Terminal_appli_ID, UICC_appli_ID) in a credential request.
9- The BSF derives Ks_int_NAF, Ks_ext_NAF and supplies to the NAF Key Center the requested keys Ks_int/ext_NAF keys, as well as the bootstrapping time and the key lifetime of Ks_int/ext_NAF keys.
The BSF may also send requested USSs to NAF Key Center according to the BSF’s policy

10-The NAF Key Center
a. If the NAF Key Center has requested a USS, and the USS indicates to the NAF Key Center that the key establishment procedure is not allowed for the targeted applications, then the NAF Key Center shall respond with appropriate error code and terminate the TLS connection with the Terminal.

b. The NAF Key Center checks if the Terminal_ID is blocked (blacklisted) and if so it does not proceed with the key establishment procedure

c. The NAF Key Center derives Ks_local from Ks_int_NAF. The NAF Key Center associates a key lifetime to the derived key Ks_local.

Ks_local is computed as Ks_local = KDF (Ks_int_NAF, Terminal_ID, ICCID, Terminal_appli_ID, UICC_appli_ID), where KDF is the key derivation function as specified in Annex B.
Editor’s note:
If two applications on the UICC or on the Terminal have the same application identifier then Ks_local will be the same for the two applications. It is FFS whether this is possible.

11- The NAF Key Center sends within HTTPS tunnel a response message to the Terminal with the following payload: B-TID, Ks_local, Key Lifetime

12- The Terminal stores Ks_local and associated parameters Key Lifetime, ICCID, Terminal_appli_ID, UICC_appli_ID

[image: image4.wmf]

UICC

NAF

Key Center

Terminal

BSF

6.

 Establishment of HTTPS

tunnel between the terminal

and the NAF Key Center

7.

 Application Request

for key establishment

sent within HTTPS tunnel

(B

-

TID, Terminal_ID,

Terminal_appli_ID, UICC

_appli_ID)

10.

 Checks Terminal_ID

number,

Derives Ks_local from

Ks_int_NAF

8.

 Authentication Request

(B

-

TID, NAF hostname,

Terminal_appli_ID, UICC

_appli_ID)

9.

 Authentication Answer

(Ks_NAF, Ks_int_NAF

Ks_ext_NAF, Prof, Bootstrap

time, key lifetime)

11.

 Application Answer

sent within HTTPS tunnel

(B

-

TID, Ks_local, Key

Lifetime)

12.

Stores Ks_local and

associated Key Lifetime

If no valid key Ks is available in the UICC

 the terminal requests a complete

GBA_U

bootstrapping procedure run

2

.

 Request for B

-

TID

 (NAF_ID)

3

-

 Return B

-

TID

(

NAF_ID, B

-

TID)

4.

 Request for Ks_local generation

(NAF_ID, Terminal_ID,

Term_appli_ID, UICC_appli_ID)

5.

 UICC retrieves Ks_int_NAF,

derives Ks_local.

The UICC stores Ks_local

-

specific

data

1.

Request

the

curren

t B

-

TID

and corresponding key

lifetime

Figure 4-3: Key establishment procedure

Annex A (informative):
Pending issues

This annex lists pending issues to take into account to progress the work on the key establishment between a UICC and a terminal.

Editor's note: The content of this annex is based on contributions S3-060258 and S3-060309 presented during SA3#43 meeting

A.1
Questions on UICC-ME channel protection
This section contains open issues provided in contribution S3-060258 (SA3#43 meeting).

· Does this approach weaken the privacy/anonymity in comparison to pre-paid or GSM IMSI/TMSI mapping (EU privacy legislation)?

A.2
UICC-ME secure interface open issues
This section contains open issues raised in S3-060309 (SA3#43 meeting).

A.2.1
Use of TLS for key transport from network to ME

If TLS is used for authenticating the ME and for transporting the UICC-ME secure interface key to the ME, then key transport from the network key server to the ME is perhaps best NOT done by sending the key as TLS session data. This is because the decryption point of the session data may not be in the trusted part of the terminal (based on the assumption that only the handshake part is implemented in the secure part of the terminal). SA3 should therefore look at extending the TLS handshake to include a server->client key transport message. RFC 3546 (soon to be updated to 4366) includes a mechanism for adding messages to the TLS handshake.

A.2.2
Terminal authentication

The current proposals assume that the terminal is able to authenticate itself (at least to the network). Although TLS and ROAP have been identified as candidates, the exact mechanism and the necessary supporting infrastructure have not as yet been defined. Ideally, the mechanism for terminal authentication should be generic so that it can be easily re-used by other services.

Before deciding on the authentication mechanism, further investigation is needed on what actually needs to be authenticated: the application on the terminal, the terminal platform, or both. The answer depends on whether the secure channel should be established between applications on the UICC and applications on the ME, or whether it should be established between the UICC and the ME platform and this general-purpose secure tunnel then used by different applications on those platforms.

In the following we consider each type of authentication in turn.

· Application authentication

We assume in this scenario that the application is provisioned with key material which it uses to authenticate itself to the network (or third party server). The application may either share a key with the network, or may be provisioned with a public and private key pair together with an appropriate certificate.

The application is reliant on the underlying platform for maintaining its integrity and for securely storing its key material. When authenticating the application, the network gains assurance that the application can still access its key material, but the network has no guarantee that the application or the underlying platform has not been compromised in any way.

The only assurance that the network may receive about the integrity of the application itself would come from an assurance (if this exists) that the application would only have been installed on a secure platform.

Application-only authentication may be required for non-security critical applications on the terminal where only a light-weight authentication is required, and where the terminal is not able to provide any additional assurances to the network. Applications authenticated using this method should not be granted full access to UICC functions and data, and should be considered only partially trusted. This should affect the security policy established by the network for the UICC for use with this application.

· ME platform authentication

ME platform authentication offers authentication of the terminal itself. As with application authentication, the terminal must be provisioned with key material with which it can authenticate itself. This is likely to be a public and private key with a corresponding certificate, since the terminal is likely to have to authenticate itself to numerous different entities.

The mechanism employed by the terminal to authenticate itself may vary from terminal to terminal, and a few different mechanisms to authenticate a terminal may need to be implemented in order to support this.

In the simplest case (simple device authentication), a terminal may simply demonstrate the knowledge of its private key, and this together with the certificate provided by the terminal manufacturer, or another suitable authority, can be used to authenticate the terminal. However, as with application authentication, this may offer the network little assurance about the current state of the terminal. Ideally, the device certificate will also contain information regarding the trustworthiness of the platform. For example, the device certificate could indicate that the certificate issuer provides guarantees that the terminal architecture is such that it cannot be put into an insecure state (e.g. the terminal supports secure boot, real time integrity protection of critical functions and/or OS mechanisms that ensure downloaded applications cannot compromise critical functions).

A better solution (device authentication with attestations) would be for the terminal to be able to also produce some evidence (attest) that it is currently in a secure state. Such requirements should be compatible with the TCG (Trusted Computing Group) MPWG (Mobile Phone Working Group) requirements (and the MPWG specifications when available) for secure mobile platforms and should include attestations of having successfully completed a secure boot. See the “Device Authentication” use case within the MPWG Use Cases document for a description of the use case in question
.Depending on the type of device authentication performed by the network and the trustworthiness of the device, the network may generate a security policy for the UICC to use with the authenticated device.

The operator should be in control over which entities shall be able to authenticate the device based on the provisioned credentials.

· Dual authentication

In order to obtain strong application authentication, the network may authenticate both the application and the ME platform, and may require assurance from the terminal that the application is in a good state.

In this scenario we assume that the application has been provisioned with key material with which it can authenticate itself. We also assume that some measurable state of the application (e.g. a value obtained by hashing the application code) is known by the network (or this may be contained in the application’s certificate).

The network begins by authenticating the terminal, and the terminal is required to present evidence of the current state of the required application. This evidence is compared to the measurable state in the application’s certificate (or to the state maintained by the network), and if these match, then the network considers the application to be in a secure state. The network also authenticates the application directly.

The methods for providing evidence of the state of an application should be compatible with attestations provided by TPMs (Trusted Platform Modules), as defined in the TCG MPWG specifications.

We note that it may not be necessary to authenticate the application directly if the network only wishes to ensure that the application is in a good state. However, there may be instances in which the network wishes to know that it is communicating with a specific installation of a registered application, and that the application has access to the correct key material.

Applications that have been strongly authenticated using this dual authentication method could be trusted by the UICC to a higher degree than those authenticated using a weaker mechanism, and this should in turn affect the associated security policy for that application in the UICC.
Annex B (normative):
Key Derivation Function definition
The description of this key derivation function KDF and input parameter encoding can be found in TS 33.220 [3]. The key derivation function KDF in this document shall be implemented as defined in TS 33.220 [3].
B.1

Ks_local key derivation in key establishment

In the key establishment between a UICC and a terminal, the input parameters for the key derivation function shall be the following:

-
FC = 0x01,

· P0 = Terminal_ID,

· L0 = length of Terminal ID is variable (not greater that 65535),

-
P1 = ICCID,

-
L1 = length of ICCID is variable (not greater that 65535),

-
P2 = Terminal_appli_ID,

-
L2 = length of Terminal_appli_ID is variable (not greater that 65535),

-
P3 = UICC_appli_ID,

-
L3 = length of UICC_appli_ID is variable (not greater that 65535).

In case that derived key Ks_local has to be established per platform, the UICC_appli_ID and the Terminal_appli_ID octet strings equal to static ASCII-encoded string "platform".
Annex C (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Cat
	Subject/Comment
	Old
	New
	WI

	2006-01
	
	
	
	
	
	Creation of document
	
	0.0.0
	

	2006-05
	
	
	
	
	
	Integration of pseudo-CRs S3-060265, S3-060280, S3-060282, and creation of annex based on contributions S3-060258 and S3-060309.
	0.0.0
	0.1.0
	KeyEstUTerm

	2006-07
	SP-33
	
	
	
	
	Integration of pseudo-CRs S3-060432, S3-060468, S3-060469 and S3-060569
	0.1.0
	1.0.0
	KeyEstUTerm

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	

� � HYPERLINK "https://www.trustedcomputinggroup.org/groups/mobile" ��https://www.trustedcomputinggroup.org/groups/mobile�

_1214309350.doc
[image: image1.wmf]

Ub

[image: image2.wmf]

Ub

[image: image3.wmf]

Ua

Dz

SLF

NAF

Zn

Zh

�

�

�

BSF

HSS

UICC

UICC Hosting Device

Remote Terminal

_1214374856.doc
		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

		

If no valid key Ks is available in the UICC the terminal requests a complete GBA_U bootstrapping procedure run

4. Request for Ks_local generation

(NAF_ID, Terminal_ID, Term_appli_ID, UICC_appli_ID)

11. Application Answer

sent within HTTPS tunnel

(B-TID, Ks_local, Key Lifetime)

1. Request the current B-TID and corresponding key lifetime

BSF

UICC

Terminal

NAF

Key Center

2. Request for B-TID

 (NAF_ID)

3- Return B-TID

(NAF_ID, B-TID)

10. Checks Terminal_ID number,

Derives Ks_local from Ks_int_NAF

9. Authentication Answer

(Ks_NAF, Ks_int_NAF Ks_ext_NAF, Prof, Bootstrap time, key lifetime)

8. Authentication Request

(B-TID, NAF hostname, Terminal_appli_ID, UICC_appli_ID)

12. Stores Ks_local and associated Key Lifetime

6. Establishment of HTTPS tunnel between the terminal and the NAF Key Center

7. Application Request

for key establishment

sent within HTTPS tunnel

(B-TID, Terminal_ID, Terminal_appli_ID, UICC_appli_ID)

5. UICC retrieves Ks_int_NAF, derives Ks_local.

The UICC stores Ks_local-specific data

_1214309337.doc

Dz

SLF

NAF

Zn

Zh

Ub

Ua

BSF

HSS

UICC

UICC Hosting Device

