Page 1

	3GPP TSG-SA5 (Telecom Management)

Meeting #23, Sundsvall, Sweden 15 - 19 October 2001
	S5-010668
S5C010427rev1

	CR-Form-v4

	CHANGE REQUEST

	

	(

	32.613
	CR
	001
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	X
	Core Network
	

	

	Title:
(

	Correction of a notification name and Addition of missing table for fallback operation

	
	

	Source:
(

	SA5

	
	

	Work item code:
(

	OAM-CM
	
	Date: (

	19/10/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	The specification uses a faulty name for the NotifyGetSessionLogEnded notification and the mapping table for the fallback operation is missing.

	
	

	Summary of change:
(

	The notification name is corrected.

The mapping table for the fallback operation is added.

 The reference to the Name Convention specification is changed to the Rel-4 version of the specification.

 The version of the specification is introduced in IDL part.

	
	

	Consequences if
(

not approved:
	There will be a mismatch between the IS and CORBA SS specifications. Fallback functionality is missing. The wrong Naming Convention specification will be referenced.

The IDL part can not perform the GetBulkCmIRPVersion operation correctly, i.e. the IRP manager can not find out with version the IRPAgent supports.

	
	

	Clauses affected:
(

	4.2, 4.3, 4.4 and Annex A.

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

.
4.2
Operation and Notification mapping

The IS part of Bulk CM: IRP defines semantics of operations and notifications visible across the Bulk Configuration IRP. The table below indicates mapping of these operations and notifications to their equivalents defined in this document.

Table 1: Mapping from IM Notification/Operation to SS equivalents

	IS Operation/ notification
	SS Method
	Qualifier

	startSession
	start_session
	M

	endSession
	end_session
	M

	upload
	upload
	M

	download
	download
	M

	activate
	activate
	M

	getSessionStatus
	get_session_status
	M

	getSessionIds
	get_session_ids
	M

	getSessionLog
	get_session_log
	M

	fallback
	fallback
	M

	abortSessionOperation
	abort_session_operation
	M

	getBulkCmIRPVersion
	get_bulk_cm_IRP_version
	M

	notifySessionStateChanged
	push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1
	M

	notifyGetSessionLogEnded
	push_structured_event

Note that OMG Notification Service OMG Notification Service [1] defines this method.

See clause 5.1.
	M

4.3
Operation Parameter Mapping

Reference Bulk CM IRP; Information Service [3] defines semantics of parameters carried in operations. The tables below indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

Table 2: Mapping from IS startSession parameters to SS equivalents

	IS Operation parameter
	SS parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception SessionIdInUseException
	M

Table 3: Mapping from IS endSession parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception UnknownSessionIdException, exception TransitionStateException
	M

Table 4: Mapping from IS upload parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	uploadDataFile Reference
	BulkCmIRPConstDefs::FileDestination sink
	M

	baseObjectInstance
	BulkCmIRPConstDefs::DistinguishedName base_object
	M

	scope, filter
	BulkCmIRPConstDefs::SearchControl search_control
	M

	status
	exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception IllegalDistinguishedNameFormatException, exception IllegalFilterFormatException, exception IllegalScopeTypeException, exception IllegalScopeLevelException
	M

Table 5: Mapping from IS download parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	downloadDataFileReference
	BulkCmIRPConstDefs::FileDestination source
	M

	status
	exception UnknownSessionIdException
	M

Table 6: Mapping from IS activate parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	saveFallback
	boolean fallback
	O

	status
	exception UnknownSessionIdException, exception TransitionStateException, exception ConcurrencyException, exception ActivationModeException
	M

Table 7: Mapping from IS fallback parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception UnknownSessionIdException, exception NoFallbackException, exception TransitionStateException, exception ConcurrencyException
	M

Table 8: Mapping from IS abortSessionOperation parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	status
	exception UnknownSessionIdException
	M

Table 9: Mapping from IS getSessionIds parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionIdList
	return of type BulkCmIRPConstDefs::SessionIdList
	M

	status
	- no error condition identified
	M

Table 10: Mapping from IS getSessionStatus parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	sessionState
	return of type BulkCmIRPConstDefs::SessionState
	M

	status
	BulkCmIRPConstDefs::ErrorInformation error_information
	M

	status
	exception UnknownSessionIdException

	M

Table 11: Mapping from IS getSessionLog parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	sessionId
	BulkCmIRPConstDefs::SessionId session_id
	M

	logFileReference
	BulkCmIRPConstDefs::FileDestination sink
	M

	contentType
	boolean only_error_info
	M

	status
	exception UnknownSessionIdException, exception ConcurrencyException
	M

Table 12: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	versionNumberList
	return of type ManagedGenericIRPConstDefs::VersionNumberSet
	M

	status
	- no error condition identified or described in SS
	M

Table 13: Mapping from IS getBulkCmIRPVersion parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	versionNumberList
	Return value of type:

CommonIRPConstDefs::VersionNumberSet
	M

	status
	- (No failure conditions identified)
	

4.4 Notification parameter mapping

Reference 3G TS 32.612 [3] defines semantics of parameters carried in notifications. The following tables indicate the mapping of these parameters to their OMG CORBA Structured Event (defined in OMG Notification Service [6]) equivalents. The composition of OMG Structured Event, as defined in the OMG Notification Service [6], is:

Header

 Fixed Header

 domain_name

 type_name

 event_name

 Variable Header

Body

 filterable_body_fields

 remaining_body
The following tables list all OMG Structured Event attributes in the second column. The first column identifies the Bulk CM IRP: IS [3] defined notification parameters.

Table 14: Mapping from IS notifyGetSessionLogEnded parameters to SS equivalents

	IS Parameter
	OMG CORBA Structured Event Attribute
	Qualifier
	Comment

	There is no corresponding IS attribute.
	domain_name
	M
	It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

	notificationType
	type_name
	M
	It carries the string NOTIFY_GET_SESSION_LOG_ENDED.

	sessionLogStatus
	event_name
	M
	It carries either the string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY or

GET_SESSION_LOG_COMPLETED_UNSUCCESSFULLY. In the case of the latter, the NV pair indicating ERROR_INFORMATION may be present.

	There is no corresponding IS parameter
	Variable Header
	
	

	managedObjectClass, managedObjectInstance
	One NV pair of filterable_body_fields
	M
	NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

	notificationId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

	eventTime
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

	systemDN
	One NV pair of filterable_ body_fields
	M
	Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

	sessionId
	One NV pair of filterable_ body_fields
	M
	Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	sourceIndicator
	One NV pair of filterable_ body_fields
	O
	Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	There is no corresponding IS attribute.
	One NV pair of filterable_ body_fields
	
	Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

Table 15: Mapping from IS notifySessionStateChanged parameters to SS equivalents

	IS Parameter
	OMG CORBA Structured Event attribute
	Qualifier
	Comment

	There is no corresponding IS attribute
	domain_name
	M
	It carries the IRP document version number string. See sub-clause 3.3.

It indicates the syntax and semantics of the Structured Event as defined by this specification.

	notificationType
	type_name
	M
	It carries the string NOTIFY_SESSION_STATE_CHANGED.

This is an attribute of Header defined in the IS.

	sessionState
	event_name
	M
	It carries one of the following:

· Upload_Failed

· Upload_Completed,

· Download_Failed,

· Download_Completed,

· Activation_Failed,

· Activation_Partly_Realised,

· Activation_Completed,

· Fallback_Failed,

· Fallback_Partly_Realised,

· Fallback_Completed
In the case of XXX_FAILED and XXX_PARTLY_REALISED, the NV pair indicating ERROR_INFORMATION may be present.

	There is no corresponding IS attribute
	Variable Header
	
	

	managedObjectClass, managedObjectInstance
	One NV pair of filterable_body_fields
	M
	NV stands for name-value pair. Order arrangement of NV pairs is not significant. The name of NV-pair is always encoded in string.

Name of NV pair is the MANAGED_OBJECT_INSTANCE of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string. See encoding of this string in [5].

These are attributes of Header defined in the IS.

	notificationId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the NOTIFICATION_ID of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a long.

This is an attribute of Header defined in the IS.

	eventTime
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the EVENT_TIME of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a IRPTime.

This is an attribute of Header of the IS.

	systemDN
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the SYSTEM_DN of interface AttributeNameValue of module NotificationIRPConstDefs.

Value of NV pair is a string.

This is an attribute of Header defined in the IS.

	sessionId
	One NV pair of filterable_body_fields
	M
	Name of NV pair is the SESSION_ID of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	sourceIndicator
	One NV pair of filterable_body_fields
	O
	Name of NV pair is the SOURCE_INDICATOR of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

	There is no corresponding IS attribute.
	One NV pair of filterable_body_fields
	
	Name of NV pair is the ERROR_INFORMATION of interface AttributeNameValue of module BulkCMIRPConstDefs.

Value of NV pair is a string.

 4.5
Two modes of operations

The upload, download, activate, get_session_log, and fallback are methods that use asynchronous mode of operation. The IRPManager uses the methods to request a task to be done. The IRPAgent, via the method return, indicates that it has understood the request and has begun to perform the task requested. When the IRPAgent has completed the requested task, either successfully or not, the IRPAgent will emit a notification, e.g., notifySessionStateChanged() defined in IS level and mapped to push() in SS level, to indicate the completion status of the requested task. If the IRPManager has subscribed (e.g., via the attach_push() of Notification IRP) for notifications, then the IRPManager will receive the notification.

The start_session, end_session, abort_session_operation, get_session_status, get_session_ids and get_bulkCM_IRP_version are methods that use synchronous mode of operation. The IRPManager uses these methods to request some information or a task to be done. The IRPAgent performs the requested task and, via the method return, indicates the requested information or if the requested task has completed successfully or not.

4.6
Mapping from IS State Names to SS equivalents

State names, as defined in the IS part of Bulk CM, consists of two sub-parts in this SS, namely SubPhase and SubState. The table below shows the mapping between these substates and the IS state name. All combinations of SubPhase and SubState not described below are considered invalid.

Table 16: Mapping from IS State Names to SS equivalents

	IS State Name
	SS SubPhase
	SS SubState

	IDLE
	IDLE_PHASE
	COMPLETED

	UPLOAD_FAILED
	UPLOAD_PHASE
	FAILED

	UPLOAD_IN_PROGRESS
	UPLOAD_PHASE
	IN_PROGRESS

	UPLOAD_COMPLETED
	UPLOAD_PHASE
	COMPLETED

	DOWNLOAD_FAILED
	DOWNLOAD_PHASE
	FAILED

	DOWNLOAD_IN_PROGRESS
	DOWNLOAD_PHASE
	IN_PROGRESS

	DOWNLOAD_COMPLETED
	DOWNLOAD_PHASE
	COMPLETED

	ACTIVATION_FAILED
	ACTIVATION_PHASE
	FAILED

	ACTIVATION_IN_PROGRESS
	ACTIVATION_PHASE
	IN_PROGRESS

	ACTIVATION_COMPLETED
	ACTIVATION_PHASE
	COMPLETED

	ACTIVATION_PARTLY_COMPLETED
	ACTIVATION_PHASE
	PARTLY_REALISED

	FALLBACK_FAILED
	FALLBACK_PHASE
	FAILED

	FALLBACK_IN_PROGRESS
	FALLBACK_PHASE
	IN_PROGRESS

	FALLBACK_COMPLETED
	FALLBACK_PHASE
	COMPLETED

	FALLBACK_PARTLY_COMPLETED
	FALLBACK_PHASE
	PARTLY_REALISED

5
BulkCMIRPNotifications Interface

OMG CORBA Notification push operation is used to realise the notification of BulkCMIRPNotifications. All the notifications in this interface are implemented using this push_structured_event method.

5.1
Method push (M)

module CosNotifyComm {

…

Interface SequencePushConsumer : NotifyPublish {

void push_structured_events(

in CosNotification::EventBatch notifications)

raises(CosEventComm::Disconnected);

…

}; // SequencePushConsumer

…

}; // CosNotifyComm

NOTE 1:
The push_structured_events method takes an input parameter of type EventBatch as defined in the OMG CosNotification module (OMG Notification Service [6]). This data type is the same as a sequence of Structured Events. Upon invocation, this parameter will contain a sequence of Structured Events being delivered to IRPManager by IRPAgent to which it is connected.

NOTE 2:
The maximum number of events that will be transmitted within a single invocation of this operation is controlled by IRPAgent wide configuration parameter.

NOTE 3:
The amount of time the supplier (IRPAgent) of a sequence of Structured Events will accumulate individual events into the sequence before invoking this operation is controlled by IRPAgent wide configuration parameter as well.

NOTE 4:
IRPAgent may push EventBatch with only one Structured Event.

Annex A (normative):
IDL: BulkCmIRPConstDefs

#ifndef BulkCmIRPConstDefs_IDL

#define BulkCmIRPConstDefs_IDL

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPConstDefs

This module contains type definitions for the Bulk CM IRP

==

*/

module BulkCmIRPConstDefs

{

 /*

 Defines the current Bulk CM IRP version

 This string is the return value for get_bulk_CM_IRP_versions(),

 get_notification_categories()

 It should be updated based on the rule of sub-clause

 titled "IRP document version number string".

 */

 const string BULK_CM_IRP_VERSION = "32.613 V4.1";

 /*

 This block identifies the notification types defined by

 this Bulk CM IRP version.

 This string is used in the second field of the Structured

 Event.

 */

 interface NotificationType

 {

 const string NOTIFY_SESSION_STATE_CHANGED = "x1";

 const string NOTIFY_GET_SESSION_LOG_ENDED = "x2";

 };

 /*

 This block assigns value for the name of the NV of the Structured Event.

 */

 interface AttributeNameValue

 {

 const string SESSION_ID = "k";

 const string SOURCE_INDICATOR = "m";

 const string ERROR_INFORMATION = "n";

 };

 /*

 This block defines all possible values for sessionState.

 One of these strings appear in the event_name of the

 Structured Event of notifySessionStateChanged notification.

 */

 interface SessionStateChangeNotification

 {

 const string UPLOAD_FAILED = "x1";

 const string UPLOAD_COMPLETED = "x2";

 const string DOWNLOAD_FAILED = "x3";

 const string DOWNLOAD_COMPLETED = "x4";

 const string ACTIVATION_FAILED = "x5";

 const string ACTIVATION_PARTLY_REALISED = "x6";

 const string ACTIVATION_COMPLETED = "x7";

 const string FALLBACK_FAILED = "x8";

 const string FALLBACK_PARTLY_REALISED = "x9";

 const string FALLBACK_COMPLETED = "x10";

 };

 /*

 This block defines all possible values for sessionLogStatus

 One of these strings appear in the event_name of the Structured

 Event of notifyGetSessionLogEnded notification.

 */

 interface LogStateNotification

 {

 const string GET_SESSION_LOG_COMPLETED_SUCCESSFULLY = "x1";

 const string GET_SESSION_LOG_COMPLETED_UNSUCESSFULLY = "x2";

 };

 /*

 For each started configuration session a unique identifier is generated

 by the IRPManager. An sessionId can not be used for an upload if it is

 already in use of a download configuration and vice versa.

 */

 typedef string SessionId;

 /*

 This string field is used in order to provide additional error information

 if an operation has failed.

 */

 typedef string ErrorInformation;

 /*

 Defines the different subphases of a configuration session

 e.g. thus it is easy to implement a detection of an upload

 or a download/activate session.

 */

 enum SubPhase {IdlePhase, DownloadPhase, UploadPhase, ActivationPhase,

 FallbackPhase};

 /*

 Defines the different substates of a configuration session. This includes

 the transition state as well.

 */

 enum SubState {Completed, Failed, PartlyRealised, InProgress};

 /*

 Defines state of a configuration session with the phase and the substate

 of the configuration.

 */

 struct SessionState

 {

 SubPhase sub_phase;

 SubState sub_state;

 };

 /*

 Contains the list of all current sessionIds

 */

 typedef sequence <BulkCmIRPConstDefs::SessionId> SessionIdList;

 /*

 Specifies a complete destination path (including filename).

 */

 typedef string FileDestination;

 /*

 The format of Distinguished Name is specified in

 the Naming Conventions for Managed Objects; 3G TS 32.300 Annex H.

 e.g. "g3SubNetwork=10001,g3ManagedElement=400001" identifies an

 G3ManagedElement instance of the object model.

 */

 typedef string DistinguishedName;

 /*

 Optionally used within the upload method to give filter critera

 */

 typedef string FilterType;

 /*

 Defines the kind of scope to use in a search together with

 SearchControl.level, in a SearchControl value.

 SearchControl.level is always >= 0. If a level is bigger than the

 depth of the tree there will be no exceptions thrown.

 */

 enum ScopeType {BaseOnly, BaseNthLevel, BaseSubtree, BaseAll};

 /*

 Controls the searching for MOs during upload, and contains:

 the type of scope ("type" field),

 the level of scope ("level" field),

 the filter ("filter" field),

 The type and level fields are mandatory.

 The filter field is optional (defined by an empty string).

 */

 struct SearchControl

 {

 ScopeType type;

 unsigned long level;

 FilterType filter;
 // optional parameter

 };

};

#endif

Annex B (normative):
IDL: BulkCmIRPSystem

#ifndef BulkCmIRPSystem_IDL

#define BulkCmIRPSystem_IDL

#include "BulkCmIRPConstDefs.idl"

#include "ManagedGenericIRPConstDefs.idl"

#include "ManagedGenericIRPSystem.idl"

// This statement must appear after all include statements

#pragma prefix "3gppsa5.org"

/* ## Module: BulkCmIRPSystem

This module implements capabilities of Bulk CM IRP.

==

*/

module BulkCmIRPSystem

{

 /*

 System fails to complete the operation. System can provide reason

 to qualify the exception. The semantics carried in reason

 is outside the scope of this IRP.

 */

 exception GetBulkCmIRPVersions { string reason; };

 exception ConcurrencyException { string reason; };

 exception IllegalFilterFormatException { string reason; };

 exception IllegalDNFormatException { string reason; };

 exception IllegalScopeTypeException { string reason; };

 exception IllegalScopeLevelException { string reason; };

 exception MaxSubscriberException { string reason; };

 exception NoFallbackException {};

 exception SessionIdInUseException { string reason; };

 exception TransitionStateException { string reason; };

 exception UnknownSubscriberException{ string reason; };

 exception IllegalURLFormatException{ string reason; };

 exception UnknownSessionIdException {};

 /*

 Defines the System interface of a EM. It defines all methods which are

 necessary to control a configuration session from a IRPManager.

 */

 interface BulkCmIRP

 {

 /*

 Return the list of all supported Bulk CM IRP versions.

 */

 ManagedGenericIRPConstDefs::VersionNumberSet get_bulk_CM_IRP_versions (

)

 raises (GetBulkCmIRPVersions);

 /*

 Uploads a configuration from the subnetwork. The result is put in a

 configuration data file in an area specified by the IRPManager.

 The MIB of the subnetwork is iterated by means of containment search,

 using a SearchControl to control the search and the returned results.

 All MOs in the scope constitutes a set that the filter works on.

 In case of a concurrent running session the function will

 return an exception. If the value of the given baseObject or FilterType

 does not exist then this asynchronous error condition will be notified.

 */

 void upload (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::DistinguishedName base_object,

 in BulkCmIRPConstDefs::SearchControl search_control

)

 raises (UnknownSessionIdException, TransitionStateException,

 ConcurrencyException,

 IllegalDNFormatException, IllegalFilterFormatException,

 IllegalScopeTypeException, IllegalScopeLevelException);

 /*

 Indicates the EM that it can download a configuration data file from

 a given configuration data file storage area. The EM will check the

 consistence of the configuration data and the software compatibilty.

 */

 void download (

 in BulkCmIRPConstDefs::SessionId session_id,

 in BulkCmIRPConstDefs::FileDestination source

)

 raises (UnknownSessionIdException, TransitionStateException);

 /*

 Activates a previously downloaded and sucessfully parsed configuration

 inside a session. This means that the configuration will be introduced

 in the live sub-network. In case of a concurrent running session

 the function will return an exception.

 */

 void activate (

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean fallback

)

 raises (UnknownSessionIdException, TransitionStateException,

 ConcurrencyException);

 /*

 Uploads a log from the subnetwork which is usally used for error

 analysis. The log is put in a logfile in the filesystem which can

 be accessed by the EM. If there are no log entries an empty log file

 is uploaded.

 */

 void get_session_log (

 in BulkCmIRPConstDefs::FileDestination sink,

 in BulkCmIRPConstDefs::SessionId session_id,

 in boolean only_error_info

)

 raises (UnknownSessionIdException, ConcurrencyException);

 /*

 Creates an instance of the configuration session state machine. The

 IDLE_PHASE & COMPLETED is notified

 */

 void start_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises(SessionIdInUseException);

 /*

 Returns the state of a configuration session.

 */

 BulkCmIRPConstDefs::SessionState get_session_status (

 in BulkCmIRPConstDefs::SessionId session_id,

 out BulkCmIRPConstDefs::ErrorInformation error_information

)

 raises (UnknownSessionIdException);

 /*

 Actives a fallback area. Each time a configuration is activated a

 fallback area can be created, s. activate parameter.

 This area is backup of the complete configuration which can be

 restored by this method. The process is as follows:

 1. When the method activate(...,..., TRUE) is used,

 a copy of the valid area is taken before the activation

 of the new planned data has started. Only one fallback area can

 exists at a time for a specific scope of the subnetwork.

 2. When a fallback area is avilable and triggered by this method, the

 previous valid area is replaced with the data stored in

 the fall back area.

 If the EM detects that the former configuration has never been

 changed it returns an exception because it does not trigger an

 activation of the former data.

 */

 void fallback (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException, NoFallbackException,

 TransitionStateException, ConcurrencyException);

 /*

 The IRPManager invokes this operation to delete all its temporary

 entities and the related sessionId which belong to the scope of

 a configuration session. This includes the related error and log

 informationen too.

 */

 void end_session (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException, TransitionStateException);

 /*

 The IRPManager invokes this operation to abort a configuration sesssion.

 This operation can be called in any state. But it is only effecting

 a configuration session in state IN_PROGRESS. In this case the

 current session task is interrupted, e.g. the activating in progress,

 using best effort strategy, and a state change is notified

 */

 void abort_session_operation (

 in BulkCmIRPConstDefs::SessionId session_id

)

 raises (UnknownSessionIdException);

 /*

 Returns a list all sessionIds of current running configuration sessions.

 */

 BulkCmIRPConstDefs::SessionIdList get_session_ids ();

 };

};

#endif

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

