Page 1

3GPP TSG-SA4 Meeting #15
Tdoc S4-(01)0060

Munich, Germany, January 22-26, 2001

	CR-Form-v3

	CHANGE REQUEST

	

	(

	26.230
	CR
	001
	(

rev
	-
	(

Current version:
	4.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Bug fix in source code of the CTM receiver.

	
	

	Source:
(

	TSG-SA WG4

	
	

	Work item code:
(

	Global Text Telephony / CTM
	
	Date: (

	2001-01-23

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	REL-4

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Bug fix in the source code of the example implementation of the CTM receiver. This bug has been reported during the T1 ballot process of the related Technical Standard for T1 (Letter Ballot 924).

	
	

	Summary of change:
(

	Fix of a bug in the synchronization mechanism of the CTM receiver. This bug in the (non-mandatory) example implementation of the CTM receiver prevents the appropriate resynchronization of the CTM receiver, if the previous initial synchronization has been triggered by the resynchronization sequence rather than by the preamble.

The change is documented in the following. It refers to the file “ctm_receiver.c” of the source code archive that is attached to specification 26.230.

	
	

	Consequences if
(

not approved:
	The example implementation of the CTM receiver might fail to track the synchronism after a cell hand-over, if the initial preamble has been missed and the initial synchronization has been triggered by the detection of the resynchronization sequence.

	
	

	Clauses affected:
(

	This Change Request refers to the source code file “ctm_receiver.c” in the zip archive “ctm_src.zip”, which is attached to specification 26.230. The modifications are located in the header of the file as well as in the function ctm_receiver(), which are both listed in the following. Additionally, the updated file “ctm_receiver.c” is provided as an attachment to this Change Request.

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

*

* File : ctm_receiver.c

* Author : EEDN/RV Matthias Doerbecker

* Tested Platforms : Sun Solaris, MS Windows NT 4.0

* Description : Complete CTM Receiver including Demodulator,

* Synchronisation, Deinterleaver, and Error Correction

*

* Changes since October 13, 2000:

* - added reset function reset_ctm_receiver()

*

* Changes since December 07, 2000:

* - Bug fix within the code for initial synchronization

* based on the detection of the resync sequence

*

* $Log: $

*

/***/

/* ctm_receiver() */

/* ************** */

/* Runs the Cellular Text Telephone Modem Receiver for a block of */

/* (nominally) 160 samples. Due to the internal synchronization, the */

/* number of processed samples might vary between 156 and 164 samples. */

/* The input of the samples and the output of the decoded characters */

/* is handled via fifo buffers, which have to be initialized */

/* externally before using this function (see fifo.h for details). */

/* */

/* input/output variables: */

/* *ptr_signal_fifo_state fifo state for the input samples */

/* *ptr_output_char_fifo_state fifo state for the output characters */

/* *ptr_early_muting_required returns whether the original audio signal */

/* must not be forwarded. This is to guarantee */

/* that the preamble or resync sequence is */

/* detected only by the first CTM device, if */

/* several CTM devices are cascaded */

/* subsequently. */

/* *rx_state pointer to the variable containing the */

/* receiver states */

/***/

void ctm_receiver(fifo_state_t* ptr_signal_fifo_state,

 fifo_state_t* ptr_output_char_fifo_state,

 Bool* ptr_early_muting_required,

 rx_state_t* rx_state)

{

 Shortint toneVec[SYMB_LEN+1];

 Shortint bitsDemod[2];

 Shortint cnt;

 Shortint numValidBits;

 Bool actual_sync_found;

 Bool octetAvailable;

 Shortint fecNetBit;

 UShortint utfOctet = 0;

 Shortint ShortintValueTmp;

 Shortint syncOffset;

 Shortint resyncDetected;

 Shortint wait_interval;

 Shortint numViterbiOutBits;

 UShortint ucsCode = 0;

 static Shortint ucsBits[BITS_PER_SYMB];

 static Shortint fecGrossBitsIn[CHC_RATE];

#ifdef DEBUG_OUTPUT

 static Bool firsttime = true;

 static FILE *rx_bits_file;

 if (firsttime)

 {

 firsttime = false;

 if ((rx_bits_file=fopen("rx_bits.srt", "wb"))==NULL)

 {

 fprintf(stderr, "Error while opening rx_bits.srt\n\n") ;

 exit(1);

 }

 }

#endif

 while (Shortint_fifo_check(ptr_signal_fifo_state)>SYMB_LEN)

 {

 /* Pop SYMB_LEN-1, SYMB_LEN, or SYMB_LEN+1 samples from fifo, */

 /* depending on the state of samplingCorrection. */

 Shortint_fifo_pop(ptr_signal_fifo_state, toneVec,

 SYMB_LEN+rx_state->samplingCorrection);

 /* Run the tone demodulator */

 tonedemod(bitsDemod, toneVec,

 (Shortint)(SYMB_LEN+rx_state->samplingCorrection),

 &(rx_state->samplingCorrection),

 &(rx_state->tonedemod_state));

#ifdef DEBUG_OUTPUT

 if (fwrite(bitsDemod, sizeof(Shortint), 2, rx_bits_file) == 0)

 {

 fprintf(stderr, "Error while writing to file\n\n") ;

 exit(1);

 }

#endif

 /* Find the synchronization sequence and run the */

 /* deinterleaver on the synchronized bitstream */

 actual_sync_found =

 wait_for_sync(rx_state->waitSyncOut, bitsDemod, 2,

 rx_state->cntIdleSymbols, &numValidBits,

 &wait_interval, &resyncDetected,

 ptr_early_muting_required,

 &(rx_state->wait_state));

 if (actual_sync_found)

 {

#ifdef DEBUG_OUTPUT

 if (wait_interval==0)

 fprintf(stderr, ">>>Initial sync found<<<");

 else

 fprintf(stderr, ">>>Initial sync found (based on resync sequence)<<<");

#endif

 resyncDetected = -1;

 reinit_deinterleaver(&(rx_state->deintl_state));

 viterbi_reinit(&(rx_state->viterbi_state));

 rx_state->cntIdleSymbols = 0;

 rx_state->numDeintlBits = 0;

 rx_state->cntRXBits = 0;

 rx_state->syncCorrect = 0;

 /* Pop all remaining bits from fifos and forget the bits */

 Shortint_fifo_reset(&(rx_state->net_bits_fifo_state));

 Shortint_fifo_reset(&(rx_state->rx_bits_fifo_state));

 /* Calculate the deinterleaver's delay of */

 /* intlvB*deintSyncLns+intlvB*(intlvB-1)*intlvD elements */

 /* plus an additional delay of RESYMC_SEQ_LENGTH, if the */

 /* synchronization was triggered by detecting resync sequence */

 /* and not by detecting the preamble. */

 rx_state->intl_delay

 = intlvB*deintSyncLns+intlvB*(intlvB-1)*intlvD + wait_interval;

 }

 /**/

 /* The following lines are for resynchronisation */

 /* (also the deinterleaver is executed here) */

 /**/

 if (resyncDetected>=0)

 {

 syncOffset

 = (rx_state->numDeintlBits + resyncDetected + 1

 - rx_state->intl_delay)

 % (NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH);

 if (syncOffset

 > (NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH)/2)

 syncOffset = syncOffset

 - (NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH);

 if ((syncOffset>-16) && (syncOffset<16))

 rx_state->syncCorrect = syncOffset;

 else

 rx_state->syncCorrect = 0;

#ifdef DEBUG_OUTPUT

 if (rx_state->syncCorrect!=0)

 fprintf(stderr, ">>resync detected: %d<<", syncOffset);

#endif

 }

 if (rx_state->syncCorrect==0)

 {

 /* The synchronisation is still ok. --> no adaptation */

 diag_deinterleaver(rx_state->deintlOut, rx_state->waitSyncOut,

 numValidBits, &(rx_state->deintl_state));

 }

 else if (rx_state->syncCorrect>0)

 {

 /* The ResyncSecquence was too late */

 /* --> some bits have to be dropped */

 if (rx_state->syncCorrect>=numValidBits)

 {

 /* The incoming bits are only inserted into the deinterleaver, */

 /* no bits are handled to the following functions */

 shift_deinterleaver((Shortint)(-numValidBits),

 rx_state->waitSyncOut,

 &(rx_state->deintl_state));

 rx_state->syncCorrect -= numValidBits;

 numValidBits=0;

 }

 else

 {

 shift_deinterleaver((Shortint)(-rx_state->syncCorrect),

 rx_state->waitSyncOut,

 &(rx_state->deintl_state));

 numValidBits -= rx_state->syncCorrect;

 diag_deinterleaver(rx_state->deintlOut,

 &(rx_state->waitSyncOut[rx_state->syncCorrect]),

 numValidBits, &(rx_state->deintl_state));

 rx_state->syncCorrect=0;

 }

 }

 else

 {

 /* The ResyncSequence was too early */

 /* --> additional Bits have to be inserted */

 ShortintValueTmp=0;

 for (cnt=0; cnt<-(rx_state->syncCorrect); cnt++)

 {

 diag_deinterleaver(&(rx_state->deintlOut[cnt]),

 &ShortintValueTmp,

 1, &(rx_state->deintl_state));

 shift_deinterleaver(1, &ShortintValueTmp,

 &(rx_state->deintl_state));

 }

 diag_deinterleaver(&(rx_state->deintlOut[-(rx_state->syncCorrect)]),

 rx_state->waitSyncOut,

 numValidBits, &(rx_state->deintl_state));

 numValidBits += -(rx_state->syncCorrect);

 rx_state->syncCorrect=0;

 }

 /**/

 /* End of resynchronisation */

 /**/

 /* Consider the deinterleaver's delay */

 /* and push the demodulated bits into the fifo buffer */

 for (cnt=0; cnt<numValidBits; cnt++)

 {

 if (rx_state->numDeintlBits >= rx_state->intl_delay)

 {

 /* Ignore all bits that are for muting or resync */

 if (!(mutingRequired((Shortint)(rx_state->cntRXBits),

 rx_state->mutePositions,

 NUM_MUTE_ROWS*intlvB))

 && (rx_state->cntRXBits<NUM_BITS_BETWEEN_RESYNC))

 {

 Shortint_fifo_push(&(rx_state->rx_bits_fifo_state),

 &(rx_state->deintlOut[cnt]), 1);

 }

 rx_state->cntRXBits++;

 if(rx_state->cntRXBits

 ==NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH)

 rx_state->cntRXBits = 0;

 }

 rx_state->numDeintlBits++;

 /* Avoid Overflows of numDeintlBits */

 if (rx_state->numDeintlBits > 10000)

 rx_state->numDeintlBits

 -= (NUM_BITS_BETWEEN_RESYNC+RESYNC_SEQ_LENGTH);

 }

 }

 /* As long as there are gross bits in the fifo: pop them, run */

 /* the channel decoder and pop the net bits into the next fifo */

 while (Shortint_fifo_check(&(rx_state->rx_bits_fifo_state)) > CHC_RATE)

 {

 Shortint_fifo_pop(&(rx_state->rx_bits_fifo_state),

 fecGrossBitsIn, CHC_RATE);

 /* Count gross bits with low reliability (i.e. bits with too low */

 /* magnitute or with their LSB not set). */

 for (cnt=0;cnt<CHC_RATE; cnt++)

 if ((abs(fecGrossBitsIn[cnt])<THRESHOLD_RELIABILITY_FOR_GOING_OFFLINE)

 || ((fecGrossBitsIn[cnt] & 0x0001) == 0))

 {

 if (rx_state->cntUnreliableGrossBits < maxShortint)

 rx_state->cntUnreliableGrossBits++;

 }

 else

 rx_state->cntUnreliableGrossBits=0;

 /* Channel decoder */

 viterbi_exec(fecGrossBitsIn, 1*CHC_RATE,

 &fecNetBit, &numViterbiOutBits,

 &(rx_state->viterbi_state));

 if (numViterbiOutBits > 0)

 {

 Shortint_fifo_push(&(rx_state->net_bits_fifo_state), &fecNetBit, 1);

 }

 }

 octetAvailable = false;

 /* As long as there are bits on the fifo: pop them and decode them into */

 /* octets until a valid octet (i.e. not an idle symbol) is received */

 while (Shortint_fifo_check(&(rx_state->net_bits_fifo_state))>=BITS_PER_SYMB)

 {

 Shortint_fifo_pop(&(rx_state->net_bits_fifo_state),

 ucsBits, BITS_PER_SYMB);

 utfOctet = 0;

 octetAvailable = true;

 for (cnt=0; cnt<BITS_PER_SYMB; cnt++)

 {

 if (ucsBits[cnt]>0)

 utfOctet += (1<<cnt);

 }

 // fprintf(stderr, " ((%d)) ", utfOctet);

 /* Decide, whether received octet is an idle symbol */

 if (utfOctet==IDLE_SYMB)

 {

 octetAvailable = false;

 rx_state->cntIdleSymbols++;

 }

 /* If more than MAX_IDLE_SYMB have been received or if more than */

 /* MAX_NUM_UNRELIABLE_GROSS_BITS gross bits with low reliability */

 /* have been received, assume that synchronization is lost and */

 /* reset the wait_for_sync function. */

 if ((rx_state->cntIdleSymbols>= MAX_IDLE_SYMB) ||

 (rx_state->cntUnreliableGrossBits>MAX_NUM_UNRELIABLE_GROSS_BITS))

 {

 reinit_wait_for_sync(&(rx_state->wait_state));

 reinit_deinterleaver(&(rx_state->deintl_state));

 viterbi_reinit(&(rx_state->viterbi_state));

 rx_state->cntIdleSymbols = 0;

 rx_state->numDeintlBits = 0;

 /* pop all remaining bits from fifos and forget the bits */

 Shortint_fifo_reset(&(rx_state->net_bits_fifo_state));

 Shortint_fifo_reset(&(rx_state->rx_bits_fifo_state));

 octetAvailable = false;

#ifdef DEBUG_OUTPUT

 fprintf(stderr, ">>receiver offline<<");

#endif

 }

 /* If octet available -> push it into octet fifo buffer */

 if (octetAvailable)

 {

 Shortint_fifo_push(&(rx_state->octet_fifo_state), &utfOctet, 1);

 rx_state->cntIdleSymbols=0; /* reset counter for idle symbols */

 }

 /* Try to convert octets from buffer into UCS code. */

 /* If successful, push decoded UCS code into output buffer */

 if (transformUTF2UCS(&ucsCode, &(rx_state->octet_fifo_state)))

 Shortint_fifo_push(ptr_output_char_fifo_state, &ucsCode, 1);

 }

}

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

