3GPP TS 32.106-6 v3.0.0 (2000-12)
CR page 7

	3GPP TSG-SA5 (Telecom Management)

Meeting #17, Sophia Antipolis, FRANCE, 22 ‑ 26 Jan 2001
	SA5#17(01)0048 rev 2

Tdoc S5C010060

	CR-Form-v3

	CHANGE REQUEST

	

	(

	32.106-6
	CR
	004
	(

rev
	-
	(

Current version:
	3.0.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	(U)SIM
	
	ME/UE
	
	Radio Access Network
	X
	Core Network
	X

	

	Title:
(

	Update Basic CM IRP Iterator to be consistent with Alarm IRP Iterator

	
	

	Source:
(

	SA5

	
	

	Work item code:
(

	OAM-CM
	
	Date: (

	02/03/2001

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	R99

	
	Use one of the following categories:
F (essential correction)
A (corresponds to a correction in an earlier release)
B (Addition of feature),
C (Functional modification of feature)
D (Editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
REL-4
(Release 4)
REL-5
(Release 5)

	
	

	Reason for change:
(

	Both Alarm IRP (32.111-3 V3.3.0) and Basic CM define iterators.

The Alarm IRP iterator was designed to match the iterator in the T1M1.5 / ITU-T CORBA framework.

This CR proposes that the Basic CM iterator be adjusted to match the Alarm IRP iterator format and style.

	
	

	Summary of change:
(

	Update the iterator to match the corresponding iterator format given in 32.111-3.

	
	

	Consequences if
(

not approved:
	Application developers will need to apply different criteria when dealing with 3GPP SA5 iterators.

	
	

	Clauses affected:
(

	6.2, 6.3, Annex A

	
	

	Other specs
(

	
	 Other core specifications
(

	

	affected:
	
	 Test specifications
	

	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

6.2
Operation and Notification mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of operation and notification visible across the Basic Configuration Management IRP. Table 1 indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

	IS Operation/ notification

(3GPP TS 32.106-5 [4])
	SS Method
	Qualifier

	getMoAttributes
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations
BasicCmInformationIterator::destroy
	M

	getContainment
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations
BasicCmInformationIterator::destroy
	O

	getBasicCmIRPVersion
	get_basicCm_IRP_version
	M

	notifyObjectCreation
(to convey of a new Managed Object created)
	See Notification IRP: CORBA SS [9]
	O

	notifyObjectDeletion
(to convey of a new Managed Object deleted)
	See Notification IRP: CORBA SS [9]
	O

	notifyAttributeValueChange
(to convey of a change of one or several attributes of a Managed Object)
	See Notification IRP: CORBA SS [9]
	O

6.3
Operation parameter mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of parameters carried in operations across the Basic Configuration Management IRP. Tables 2, 3 and 4 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMoAttributes when called with ResultContents set to NAMES_AND_ATTRIBUTES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 2: Mapping from IS getMoAttributes parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	in DN baseObject
	M

	scope
	in searchControl (SearchControl.scope and SearchControl.level)
	M

	filter
	in searchControl (SearchControl.filter)
	M

	attributeListIn
	in requestedAttributes
	M

	managedObjectClass
managedObjectInstance
attributeListOut

	parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface.
	
M

	status
	exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
	M

The SS operation find_managed_objects is equivalent to the IS operation getContainment when called with ResultContents set to NAMES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 3: Mapping from IS getContainment parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	in DN baseObject
	M

	scope
	in searchControl (SearchControl.scope and SearchControl.level)
	O

	Not specified in IS
	in searchControl (SearchControl.filter)
	M

	containment
	parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface.
	M

	status
	exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
	M

Annex A (normative): CORBA IDL, Access Protocol

 exception UndefinedScopeException {

 string reason;

 };

 exception FilterComplexityLimit {

 string reason;

 };
 exception NextBasicCmInformations {

 string reason;

 };
 exception InvalidParameter {

 string parameter;

 };
 typedef sequence<Result> ResultSet;

 /**
 The BasicCmInformationIterator is used to iterate through a snapshot of

 Managed Object Information when IRPManager invokes find_managed_objects.

 IRPManager uses it to pace the return of Managed Object Information.

 IRPAgent controls the life-cycle of the iterator. However, a destroy

 operation is provided to handle the case where IRPManager wants to stop

 the iteration procedure before reaching the last iteration.

 */

 interface BasicCmInformationIterator

 {

 /**

 This method returns between 1 and “how_many” Managed Object information.

 The IRPAgent may return less than “how_many” items even if there are

 more items to return. “how_many” must be non-zero. Return TRUE if there

 may be more Managed Object information to return. Return FALSE if there

 are no more Managed Object information to be returned.

 If FALSE is returned, the IRPAgent will automatically destroy the

 iterator.
 @parm how_many how many elements to return in the "fetchedElements" out

 parameter.

 @parm fetchedElements the elements.

 @returns A boolean indicating if any elements are returned.

 "fetchedElements" is empty when the BasicCmInformationIterator is

 empty.
 */

 boolean next_basicCmInformations (

 in unsigned short how_many,

 out ResultSet fetchedElements
)

 raises (NextBasicCmInformations,InvalidParameter);

 /**

 This method destroys the iterator.

 */

 void destroy ();

 }; // end of BasicCmInformationIterator
 typedef sequence<string> AttributeNameSet;

 /**

 * The BasicCmIrpOperations interface.

 * Supports a number of Resource Model versions.

 */

 interface BasicCmIrpOperations

 {

 /**

 * Get the version of the interface and all supported resource

 * model versions.

 *

 * @returns all supported versions.

 */

 CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

 /**

 * Performs a containment search, using a SearchControl to

 * control the search and the returned results.

 *

 * All MOs in the scope constitute a set that the filter works on.

 * The result BasicCmInformationIterator contains all matched MOs,

 * with the amount of detail specified in the SearchControl.

 * For the special case when no managed objects are matched in

 * find_managed_objects, the BasicCmInformationIterator will be returned.
 * Executing
the next_basicCmInformations in the
 * BasicCmInformationIterator will return FALSE for

 * completion.

 *

 * @parm baseObject The start MO in the containment tree.

 * @parm searchControl the SearchControl to use.

 * @parm requestedAttributes defines which attributes to get.

 * If this parameter is empty (""), all attributes shall

 * be returned. Note: In R99 this is the only supported semantics.

 * Note that this argument is only

 * relevant if ResultContents in the search control is

 * specifed to NAMES_AND_ATTRIBUTES.

 *

 *

 * @raises UndefinedMOException The MO does not exist.

 * @raises IllegalDNFormatException The dn syntax string is

 * malformed.

 * @raises IllegalScopeTypeException The ScopeType in scope contains

 * an illegal value.

 * @raises IllegalScopeLevelException The scope level is negative

 * (<0).

 * @raises IllegalFilterFormatException The filter string is

 * malformed.

 * @raises FilterComplexityLimit if the filter syntax is correct,

 * but the filter is too complex to be processed by the IRP agent.

 * @see SearchControl

 * @see BasicCmInformationIterator
 */

 BasicCmInformationIterator find_managed_objects(in DN baseObject,

 in SearchControl searchControl,

 in AttributeNameSet requestedAttributes)

 raises (UndefinedMOException,

 IllegalDNFormatException,

 UndefinedScopeException,

 IllegalScopeTypeException,

 IllegalScopeLevelException,

 IllegalFilterFormatException,

 FilterComplexityLimit);

 };

};

#endif

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the lastest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��http://www.3gpp.org/3G_Specs/3G_Specs.htm�

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line.

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. Work item acronyms are listed in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/�

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report 21.900 "3GPP working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. essential correction).

�PAGE \# "'Page: '#'�'" �� Enter each the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Enter an X in the box if any other specifications are affected by this change.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

CR page 1

