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6.2
Operation and Notification mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of operation and notification visible across the Basic Configuration Management IRP. Table 1 indicates mapping of these operations and notifications to their equivalents defined in this SS.

Table 1: Mapping from IS Notification/Operation to SS equivalents

	IS Operation/ notification

(3GPP TS 32.106-5 [4])
	SS Method 
	Qualifier

	getMoAttributes
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations
BasicCmInformationIterator::destroy
	M

	getContainment
	BasicCmIrpOperations::find_managed_objects

BasicCmInformationIterator::next_basicCmInformations
BasicCmInformationIterator::destroy
	O

	getBasicCmIRPVersion
	get_basicCm_IRP_version
	M

	notifyObjectCreation 
( to convey of a new Managed Object created)
	See Notification IRP: CORBA SS [9]
	O

	notifyObjectDeletion 
( to convey of a new Managed Object deleted)
	See Notification IRP: CORBA SS [9]
	O

	notifyAttributeValueChange 
(to convey of a change of one or several attributes of a Managed Object) 
	See Notification IRP: CORBA SS [9]
	O


6.3
Operation parameter mapping

The IS part of Basic CM IRP: IM (see 3GPP TS 32.106-5 [4]) defines semantics of parameters carried in operations across the Basic Configuration Management IRP.  Tables 2, 3 and 4 indicate the mapping of these parameters, as per operation, to their equivalents defined in this SS.

The SS operation find_managed_objects is equivalent to the IS operation getMoAttributes when called with ResultContents set to NAMES_AND_ATTRIBUTES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 2: Mapping from IS getMoAttributes parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	in DN baseObject
	M

	scope
	in searchControl (SearchControl.scope and SearchControl.level)
	M

	filter
	in searchControl (SearchControl.filter)
	M

	attributeListIn
	in requestedAttributes
	M

	managedObjectClass
managedObjectInstance
attributeListOut

	parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface. 
	
M

	status
	exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
	M


The SS operation find_managed_objects is equivalent to the IS operation getContainment when called with ResultContents set to NAMES. Iterating the BasicCmInformationIterator is used to fetch the result.

Table 3: Mapping from IS getContainment parameters to SS equivalents

	IS Operation parameter
	SS Method parameter
	Qualifier

	baseObjectInstance
	in DN baseObject
	M

	scope
	in searchControl (SearchControl.scope and SearchControl.level)
	O

	Not specified in IS
	in searchControl (SearchControl.filter)
	M

	containment
	parameter fetchedElements in the next_basicCmInformations in the BasicCmInformationIterator interface. 
	M

	status
	exception UndefinedMOException,
exception IllegalDNFormatException,
exception UndefinedScopeException,
exception IllegalScopeTypeException,
exception IllegalScopeLevelException,
exception IllegalFilterFormatException,
exception FilterComplexityLimit
	M


Annex A (normative): CORBA IDL, Access Protocol

   exception UndefinedScopeException {

       string reason;

   };

   exception FilterComplexityLimit {

      string reason;

   };
   exception NextBasicCmInformations {

      string reason;

   };
   exception InvalidParameter {

      string parameter;

   };
    typedef sequence<Result> ResultSet;

    /**
     The BasicCmInformationIterator is used to iterate through a snapshot of 

      Managed Object Information when IRPManager invokes find_managed_objects.

      IRPManager uses it to pace the return of Managed Object Information.

     IRPAgent controls the life-cycle of the iterator. However, a destroy

      operation is provided to handle the case where IRPManager wants to stop

      the iteration procedure before reaching the last iteration.


     */

    interface BasicCmInformationIterator 

    {






































       /**

        This method returns between 1 and “how_many” Managed Object information.

         The IRPAgent may return less than “how_many” items even if there are

         more items to return. “how_many” must be non-zero. Return TRUE if there

         may be more Managed Object information to return. Return FALSE if there

         are no more Managed Object information to be returned. 

         If FALSE is returned, the IRPAgent will automatically destroy the

          iterator.
         @parm how_many how many elements to return in the "fetchedElements" out

          parameter.

         @parm fetchedElements the elements.

         @returns A boolean indicating if any elements are returned. 

          "fetchedElements" is empty when the BasicCmInformationIterator is

          empty.
        */

        boolean next_basicCmInformations (

          in unsigned short how_many,

          out ResultSet fetchedElements
        )

        raises (NextBasicCmInformations,InvalidParameter);

        /**

        This method destroys the iterator.

        */

        void destroy ();

    }; // end of BasicCmInformationIterator
   typedef sequence<string> AttributeNameSet;

    /**

     * The BasicCmIrpOperations interface.

     * Supports a number of Resource Model versions.

     */

    interface BasicCmIrpOperations

    {

       /**

        * Get the version of the interface and all supported resource

        * model versions.

        *

        * @returns all supported versions.

        */

       CommonIRPConstDefs::VersionNumberSet get_basicCm_IRP_version();

       /**

        * Performs a containment search, using a SearchControl to

        * control the search and the returned results.

        *

        * All MOs in the scope constitute a set that the filter works on.

        * The result BasicCmInformationIterator contains all matched MOs,

        * with the amount of detail specified in the SearchControl.

        * For the special case when no managed objects are matched in 

        * find_managed_objects, the BasicCmInformationIterator will be returned.
        * Executing 
the next_basicCmInformations in the 
        * BasicCmInformationIterator will return FALSE for 

        * completion.

        *

        * @parm baseObject The start MO in the containment tree.

        * @parm searchControl the SearchControl to use.

        * @parm requestedAttributes defines which attributes to get.

        *   If this parameter is empty (""),  all attributes shall 

        *   be returned. Note: In R99 this is the only supported semantics.

        *   Note that this argument is only

        *   relevant if ResultContents in the search control is 

        *   specifed to NAMES_AND_ATTRIBUTES.

        *  

        * 

        * @raises UndefinedMOException The MO does not exist.

        * @raises IllegalDNFormatException The dn syntax string is

        * malformed.

        * @raises IllegalScopeTypeException The ScopeType in scope contains

        * an illegal value.

        * @raises IllegalScopeLevelException The scope level is negative

        * (<0).

        * @raises IllegalFilterFormatException The filter string is

        * malformed.

        * @raises FilterComplexityLimit if the filter syntax is correct,

        *   but the filter is too complex to be processed by the IRP agent.

        * @see SearchControl

        * @see BasicCmInformationIterator
        */

       BasicCmInformationIterator find_managed_objects(in DN baseObject,  

                                     in SearchControl searchControl,

                                     in AttributeNameSet requestedAttributes)

          raises (UndefinedMOException,

                  IllegalDNFormatException,

                  UndefinedScopeException,

                  IllegalScopeTypeException,

                  IllegalScopeLevelException,

                  IllegalFilterFormatException,

                  FilterComplexityLimit);

    };

};
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