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1.
Abstract

This contribution enhances the concepts of DUT rotation relative to the SCME channel model origin for the conducted portion of the absolute data throughput framework to specifically address 3D evaluation and a correlation based channel model.
2.
Introduction

Companies participating in the specification of MIMO OTA testing methodologies have discussed the absolute data throughput comparison framework. The absolute data throughput comparison framework provides a mechanism to compare the radiated test results with conducted results that represent the radiated methodology tested.  The absolute data throughput comparison is included in the TR 37.977 [1] and well as the MOSG Inter-Lab Inter-Technique test plan [2].  The use of actual antenna data is essential in the conducted evaluation. It has been shown during the September 2012 MOSG meeting how to use the antenna data for correlation based channel models [3]. At RAN4#66 meeting it is presented how to use the antenna pattern data for correlation based models [4], [5]. 
This contribution elaborates on aspects of device under test (DUT) conducted evaluation for the purpose of performing the conducted portion of the framework and proposes the associated description into Sections 9.3.1.3 of the approved text for TR 37.977 [1].  The change tracking marks in this document are relative to the approved text in [1].
3.
Proposal

It is proposed to approve the text proposal for TR 37.977 on the emulation of DUT rotation in the conducted test of the absolute throughput framework.
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9.3.1.3
Emulation of Antenna Pattern for Conducted Evaluation
For the conducted portion of the absolute data throughput framework, it is necessary to generate the spatially filtered channel impulse response per polarization and then combine to generate the emulated channel impulse response coefficients.  The measured antenna pattern shall be interpolated to match the spatial resolution of the angles of arrival of the SCME channel emulator (this value is typically 1 degrees).  Figure 9.3.1.3-1 below illustrates an example of this procedure using a simplified antenna pattern and channel PAS.
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Figure 9.3.1.3-1: Rotation of antenna pattern over azimuth positions

In general, the emulation of antenna pattern rotation is specific to the channel model.  For 2D channel models antenna pattern rotation shall be performed over 360 degrees in 30 degree steps (12 total positions).  For other channel models this process is FFS.

A spatial filtering operation alone does not capture the behaviour of the 2D channel model as a function of DUT rotation. Figure 9.3.1.3-2 below illustrates the geometric parameters of the 2D channel model [15] for two DUT rotations.
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Figure 9.3.1.3-2: (a) 2D channel model geometric parameters for MS array direction = 0 degrees; (b) MS array direction = 60 degrees

For a given rotation of the DUT, the angle of the MS array relative to the cluster angles of arrival changes.  Thus, MS array rotation together with the spatial filtering operations described above is necessary to emulate the conducted portion of the framework properly.  Doppler spread, which is a function of the MS direction of travel relative to the channel model clusters’ angles of arrival, shall remain the same for all rotations of the DUT.
We next explain how the absolute throughput framework can be formulated in terms of correlation-based channel models. In particular, we show how the complex antenna patterns determine the parameters in these models. The special case of the standard 2-D SCME is presented here. The results are more general than the often-used Kronecker formulation, but reduce to the Kronecker model when the Kronecker assumptions are satisfied.
With the general correlation-based channel-model formulation, the channel matrix for a single tap can be expressed as [19, p 40]:
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 is a Gaussian matrix, and
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is the spatial correlation matrix.

Dao [20, Eq. (25)] shows for a general 3D scattering environment (which can be specialized to a 2D scattering environment) that the elements of the spatial correlation matrix are


[image: image7.wmf]{

}

*()()()()()()()()

11

()()

TxvRxvTxhRxvTxvRxhTxhRxh

pmqnpmqnmnpqmnpqmnpqmnpq

EhthtPP

XPDXPD

gggggggg

æö

=+++

ç÷

èø


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (3)

when the cross-polar discrimination is the same for vertical and horizontal polarizations 
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.  Moreover, 
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, the gammas for the transmitting antennas are defined as



[image: image13.wmf](

)

(

)

2

*

()()()

00

(,)(,),sin

TxTxTxTx

mnmn

FFpdd

pp

mmm

gqfqfqfqqf

=

òò


 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4)

where 
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.  In our notation any phase shift caused by the physical location of the array element  has been accounted for by the patterns. Therefore, we do not have the exponential factors seen under the integral signs in [20, Eq. (25)]
Similarly, the gammas for the receiving antennas are defined as
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where 
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We consider next the standard 2D SCME model [21].  For this model, all transmission and reception take place in the 
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 plane, so the power angular spectra are
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and
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The power-azimuth spectrum is different for each cluster as defined by the SCME model.  Inserting these expressions into the general formulas above gives
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and
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where it is understood that the antenna patterns are evaluated in the 
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qp

=

 plane.

We consider finally the isotropic channel model with SCME temporal characteristics. Assume that a standard 2D SCME model [21] is connected to an isotropic environment through a set of relay antennas. The elements of the channel matrix for the combined channel model can be expressed as



[image: image31.wmf]()()

1

()()

U

jSCME

pmupum

u

htAht

=

=

å


where u is the index for the relay antennas (there are U relay antennas in play), 
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 is the SCME channel matrix element (for a single tap), and
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Here, j is the isotropic state index, and 
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is the plane-wave index (there is a total of L plane waves in play).  Moreover, 
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 are the plane-wave amplitudes modeled by independent random complex variables with uniformly distributed magnitude and phase.  In Matlab, 
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 can be computed for each j and u using the rand and exp functions as 

[image: image40.wmf](,)

ju

a

l

 “=” rand(1,L).*exp(2*pi*i*rand(1,L))
and


[image: image41.wmf](,)

ju

b

l

 “=” rand(1,L).*exp(2*pi*i*rand(1,L))
These computations are repeated for each 
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Using the fact that the relay antennas are uncorrelated, we get
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According to [22], the isotropic correlation coefficient 
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 can be expressed (for each u) as an average over the isotropic state index: 
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Therefore, the desired matrix elements 
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[image: image48.wmf](

)

*

22

*()()()()

1

[()()]()()

U

RxjjSCMESCME

pmqnpqupuqumun

u

EhthtEAEAEhtht

r

=

éù

éùéù

=

êúêú

êú

ëûëû

ëû

å


where 
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 is proportional to the isotropic correlation coefficient of the receiving antennas.
This process may be automated with channel emulator control software or performed manually.  The output data format is described in Section 9.3.1.5.
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