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Introduction

This document presents HP's further thoughts on the measurement of modulation accuracy and proposes a modulation accuracy measurement that is applicable to both the uplink and downlink, and to both 3GPP and 3GPP2 systems.

The revised proposal embraces inputs we have taken from discussions with members of 3GPP and 3GPP2 arising from our original proposal.  It also reflects the results of further investigation work by HP.  We also acknowledge the helpful contribution from Rohde & Schwarz[1].

As a result of this further work, the proposed measurement departs to some extent from our earlier proposal of Composite Rho[2].  However, the basic principle of synthesizing a reference signal and evaluating the error signal remains.  Only the names have changed.

We considered that;

1) It is preferable for a standards specification to have a single value as a global quantitative indication of modulation accuracy. (That said, we have also proposed a secondary measurement in the code domain).
2) There should be consistent, though not necessarily identical, measurement methods for the forward and reverse link. 

3) It is also necessary to consider a quantitative indication of modulation quality in the code domain (i.e. after de-spreading). 

We will first describe the proposed measurements qualitatively, before offering a more rigorous definition and a proposal for revision to the specification text.

The measurement methods are described in fairly general terms.  We believe they can be applied equally well to an FDD or TDD mode signal, but the details of the TDD mode measurements are for further study.

Qualitative Description

The signal under test is received, passed through a root-raised cosine receive filter, and active channels are de-spread to the symbol level.

We can ensure that the active channels are identified correctly by employing a test signal, or we can depend on blind identification of the active channels.  We suggest that it is desirable to specify a test signal to ensure comparable results, and we agree with the observation[1] that it should be "typical for an operational case".  We have previously suggested a block of 50 adjacent active codes at the SF=128 level as a possible candidate for the downlink test signal[2].

The demodulation function will include a parameter estimator which will seek to minimize the error by adjusting certain parameters.  We propose carrier frequency  / phase, chip timing (one estimate for the composite waveform), channel power on active channels, and origin offset (estimated but not removed prior to EVM computation).

We exclude code-by-code chip timing alignment from the standardized parameter estimation set on the basis that this will be avoided by design in contemporary implementations.  Clearly this could be implemented, with a measurement speed penalty, for more detailed analysis of systems that must employ analog code multiplexing for backwards compatibility with legacy systems.

Having demodulated the signal, a reference signal is synthesized from the de-spread symbols and subtracted from the measured signal to produce a time record of error vectors.

The square root of the ratio of the mean power of the error vector signal  and the mean power of the reference signal is computed and expressed as a percentage.  This is our proposed definition of Error Vector Magnitude (see the discussion of alternative definitions).

While this is a useful "catch all" Global measurement, it does not give any indication of how the error power is distributed in the code domain and yet this will clearly impact the code-by-code performance of the system.

To address this, we propose a secondary measurement in which the error vector signal only is de-spread across the whole code space at the highest spreading factor (SF=256 [512?]).  The error power projected onto each code is expressed in dB relative to the power of the measured signal.  It provides a view of the distribution of error in the code domain and could be subjected to a limit on its peak value.

With reference to [1], we support the proposal that the best fit should be achieved by minimizing the mean square error of the designated parameters.

We would also welcome further discussion on whether the SCH symbol time should be included in the measurement period.

Now for a little more detail...

Error Vector Magnitude

We describe the received, de-scrambled chip stream as a vector Z of complex valued samples.  The vector is of length
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, where n is the number of symbol periods in the measurement interval and m is the spreading factor (m chips per symbol, with one sample per chip).  Actually, the time-record processed by the measuring instrument may be considerably longer that the measurement interval to aid more accurate receiver parameter estimation, but for the purpose of this discussion we consider only the measurement interval.

We assume the existence of a demodulation process based on least mean square error minimization of certain parameters from which we can re-synthesize a reference signal as a vector R of complex valued samples, this vector is also of length N.

The error vector is defined as the complex valued vector,
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The total error vector power is given by the dot product of the error vector and its complex conjugate.  The mean error vector power is given by,
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Similarly, the mean received signal power is given by,


[image: image4.wmf]N

N

P

Z

2

Z

Z

Z

=

×

=


and the mean reference signal power is given by,
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We define the Error Vector Magnitude as,
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Discussion of EVM Definition

Error Vector Magnitude is "traditionally" defined for QAM signals by the equation,
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Where SMAX is the magnitude of the vector to the outermost state of the QAM constellation.

This is not a particularly "nice" measurement.  Firstly it ratios an RMS voltage to a peak voltage.  Secondly (and as a consequence of the first point) the significance of a particular EVM percentage depends upon the peak / average ratio of the modulation.  For QAM modulation this ratio (at the symbol decision instant) is 1 for QPSK, rising to 1.63 for 256 QAM.  So, for example, 5% EVM on a QPSK signal and 3% EVM on a 256 QAM are equivalent levels of impairment.

For signals such as CDMA where the signal peak amplitude is not easily determined an alternative definition for error vector magnitude squared (EVM2) has been given[3] as "the ratio of the energy of the error to the energy of the error-free transmit signal", this leads to,
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This is rather more logical as it references the RMS error to an RMS signal.  Based on this definition the current working assumption of EVM = [12.5] % translates to a PE/PR ratio of -18.06 dB.

Code Domain Power

Any or all of the above vectors (Z, R and E) can usefully be projected into the code domain.

· The projection of Z gives the code domain power histogram, familiar from IS-95.

· The projection of R gives the estimation of the power coefficients for each active channel.

· The projection of E gives the distribution of error power in the code domain.

To perform this projection we take a general vector V (which may be Z, R or E) of complex valued samples.  The vector is of length
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, where n is the number of symbol periods in the measurement interval and m is the spreading factor.  The individual complex valued elements of V are given by,
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We first de-scramble the chip stream and divide it into symbol vectors,
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We generate a 2-dimensional matrix of the projections of each received symbol vector onto each code vector Ci (i = 0...m-1).  
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and ci is the ith spreading code ( the ith row of the Hadamard matrix).  
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 is its' complex conjugate.
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We can construct three such matrices, from the vectors Z, R and E which we will call PZ, PR and PE.  We observe that,


[image: image15.wmf]E

R

Z

P

P

P

+

=


If we compute the square of the magnitudes of the terms in PZ then we arrive at a matrix of power coefficients which we can further process by summing the values for each code across all symbols and normalizing to the received signal power.  This produces the code domain power coefficient vector.
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For each code i, we have computed the projection of a symbol-long segment of the vector V onto code vector Ci for each symbol in the measurement interval.  We have summed these projected powers over all symbols and then normalized to the received signal power.
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The vector of power coefficients may be, at least conceptually, plotted as a histogram to give a display the power distribution in the code domain for the vector V.

We now seek a measure of the de-spread signal quality.  In particular we focus on the code domain distribution of the error power.

Ideally, we want the error power to be both low level and evenly distributed across the code domain.  We do not, for example, want it concentrated in a small number of codes where it would disproportionately degrade the performance of those codes.

This gives rise to the concept of a peak code domain error limit where the error signal must not exceed a certain value in any of the codes. 

If we were to assume as a worked example only that the modulation quality limit was indeed 12.5%, then the power ratio implicit in this value is -18.06 dB.  If we further assume that there is no correlation between the error and the reference signal, then the total relative power in the error signal is,
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If this error power was distributed evenly across the code domain (at SF = 256) then 0.0000617 projects onto each code, corresponding to an error floor of 
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 dB relative to the received signal power.

Revised Text

For reference, the current text in TSG RAN S4.01b v0.0.3 is reproduced below.

6.8
Modulation Accuracy

Modulation accuracy is the difference between the measured and the theoretical modulated waveform. Modulation accuracy is measured as the root-mean-square value of the error of the vector of the ideal signal point.

6.8.1
Minimum requirement

The Modulation accuracy shall not be worse than [12.5] %.

If the ideas presented in this paper are adopted by TSG RAN WG4, then the following is  proposed as replacement text for the modulation accuracy measurement definition in both TSG RAN S4.01a and TSG RAN S4.01b.

6.8 Modulation Accuracy

The modulation accuracy is a measure of the difference between the measured waveform and the theoretical modulated waveform (the error vector).  It is the square root of the ratio of the mean error vector power to the mean reference signal power expressed in  %.  The measurement interval is one power control group (timeslot).

6.8.1 Minimum requirement

The modulation accuracy shall not be worse than [12.5] %.

6.8b Peak Code Domain Error

The code domain error is computed by projecting the error vector power onto the code domain at the maximum spreading factor.  The error power for each code is ratioed to the mean power of the received waveform expressed in dB. The measurement interval is one power control group (timeslot).

6.8b.1 Minimum requirements

The code domain error shall not exceed [     ] dB.

Conclusions

We have focused on proposing a modulation accuracy measurement appropriate for inclusion in the specification documents, and we have suggested that measurement of the modulated signal should be supplemented by a measurement in the code domain.

There are, of course, many other ways of investigating the quality of a CDMA signal.  The proposal from Rohde & Schwarz[1] mentions several.  In particular, code selective EVM is discussed.  This is undoubtedly a useful measurement as it reflects what is presented to the decision circuits for the selected code and thus directly relates to the performance of that code.

We considered this as the basis for a global "figure of merit" but rejected it for that purpose, because the sum of all the individual active channel symbol EVM values does not represent the total error, it does not include error energy that projects onto the unused codes.

We also have doubts about the value of code power offsets[1] as relevant to a modulation quality measurement.  Absolute channel power is not important in a modulation quality measurement.  However, it should be measured as part of another measurement more specific to power or power control.
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