Page 4
Draft prETS 300 ???: Month YYYY

3GPP TSG-RAN WG2 #91
Tdoc R2-153616
Beijing, P.R. China, 24th – 28th August 2015
Agenda Item:
7.4.2
Source:
Ericsson
Title:
RRC details for Rel-13 low complexity and coverage enhanced UEs
Document for:
Discussion, Decision
1 Introduction

The purpose of this contribution is to initiate discussion on Radio Resource Control (RRC) details for the Enhanced MTC feature for further complexity reductions and coverage enhancements.
2 Discussion
Even though the discussions on e.g. message contents, mobility procedures etc. are still very much open it would be useful, for the sake of stage-3 progress, already now to agree upon some principles related to message structures, extension types and handling of fields and procedures. The intention of this discussion is to motivate some choices and start a running RRC CR.
2.1 Message class extensions
So far it has been agreed during RAN2#90 meeting that a new SIB instance is needed,
	Agreements
1
The following fields will be provided in new SIB instances and shall have the same value as the corresponding fields provided in legacy SIBs, i.e. option B1: trackingAreaCode, cellIdentity, intraFreqReselection, p-Max, freqBandIndicator, tdd-Config, ims-EmergencySupport-r9, freqInfo and mbsfn-SubframeConfigList, cellBarred and plmn-IdentityList.

New message instances are specified by creating a message class extension. In this case, an extension is needed to BCCH-DL-SCH message class.
Proposal 1 Create an extension to BCCH-DL-SCH message class.

2.2 Identifiers

The proposed extension requires field and type identifier names. It is clear that the naming discussion is not the most important topic for this work item but it is nevertheless necessary and timely because the message class extension cannot be specified and referenced in the specification without identifiers.
So far the new block has been termed as SIB1x which could suggest naming the field and type identifiers as systemInformationBlockType1x and SystemInformationBlockType1x respectively. Unfortunately names that contain character “x” are typically used in draft specifications and CRs to indicate identifier and subclause names that are temporary or incomplete. It is therefore motivated to discuss other names that could avoid potential misconceptions in frozen specifications.
One possible solution is to name the message type as if it was the next SIB information element, but that would mix up the naming of information elements with that of BCCH-DL-SCH message types. SIB1 and the proposed extension are both message types whereas all other SIBs are defined as information elements. If the message type extension is named as SIB20 there would be a gap e.g. in the SIB-Type list as soon as a new instance is created after sib-Type19-v1250 because it would be numbered as sib-Type21. This could unnecessarily raise questions and confusion why sib-Type20 is absent in the list. The SIB-Type list is shown below.
SIB-Type ::=

ENUMERATED {

sibType3, sibType4, sibType5, sibType6,

sibType7, sibType8, sibType9, sibType10,

sibType11, sibType12-v920, sibType13-v920,

sibType14-v1130, sibType15-v1130,

sibType16-v1130, sibType17-v1250, sibType18-v1250,

..., sibType19-v1250}

Another possible solution is to use a similar kind of naming as in 25.331 where new SIB versions are given a suffix “bis”. It is proposed to adopt this solution because it has been used before in RAN WG2. Apart from the message class extension, a placeholder is needed for future message class extensions and -r13 suffices should be added to all new identifiers to indicate that they introduced in Release-13, i.e. the message class extension should be introduced as follows
-- ASN1START

BCCH-DL-SCH-Message ::= SEQUENCE {

message

BCCH-DL-SCH-MessageType

}

BCCH-DL-SCH-MessageType ::= CHOICE {

c1

CHOICE {

systemInformation

SystemInformation,

systemInformationBlockType1

SystemInformationBlockType1

},

messageClassExtension
CHOICE {

c2

CHOICE {

systemInformationBlockType1bis-r13
SystemInformationBlockType1bis-r13

},

messageClassExtensionFuture-r13
SEQUENCE {}

}

}

-- ASN1STOP

Proposal 2 Denote the field and type identifiers as systemInformationBlockType1bis-r13 and SystemInformationBlockType1bis-r13 respectively.
In the rest of the discussion, the new system information block type is referred to as SIB1bis.

2.3 Message definitions and extensions
The discussion on message contents is still on-going in RAN2 and the discussion indicates that there are several possible ways to define the new message and specify its extensibility. This contribution aims to address some open issues and compare three possible options.
2.3.1 Option 1: Reuse the current SIB1 structure
If the message content of SIB1bis is very similar to that of current SIB1, it would useful to reuse the existing SIB1 message structure by specifying that SIB1bis have the same syntax. It should be noted that this does not mean that the content of the two blocks is the same because the messages are separate SIB instances. An example of such a solution can be found in UMTS where System Information Block type 5bis is defined in 25.331 subclause 10.2.48.8.8. as follows,
10.2.48.8.8
System Information Block type 5 and 5bis
The system information block type 5 contains parameters for the configuration of the common physical channels in the cell. System information block type 5bis uses the same structure as System information block type 5. System information block type 5bis is sent instead of system information block type 5 in cells that use Band IV or Band IX or Band X if it is broadcasted.
Conceptually the notion of “using the same structure” does not create any issues for the message definition because ASN.1 allows that a type is defined exactly identical to another type, see e.g. the CR in [1] where the SIB5bis definition is introduced as follows

-- SysInfoType5bis uses the same structure as SysInfoType5
SysInfoType5bis ::= SysInfoType5
A similar kind of approach could be used for SIB1bis by adding a statement in the SIB1 subclause to specify that the SIB1bis uses the same structure as SIB1 as well as adding the SIBbis ASN.1 definition (somewhere) in the same ASN.1 segment as the SIB1 definition, e.g.
–
SystemInformationBlockType1 and SystemInformationBlockType1bis
SystemInformationBlockType1 contains information relevant when evaluating if a UE is allowed to access a cell and defines the scheduling of other system information. SystemInformationBlockType1bis uses the same structure as SystemInformationBlockType1.
Signalling radio bearer: N/A

RLC-SAP: TM

Logical channel: BCCH

Direction: E‑UTRAN to UE

SystemInformationBlockType1 message
-- ASN1START

SystemInformationBlockType1bis-r13 := SystemInformationBlockType1
SystemInformationBlockType1 ::=

SEQUENCE {
If there is a need to define new fields to SIB1bis, i.e. such fields that are not in the current SIB1 root element, they could be added as non-critical extensions to SIB1. Since all SIB extensions are always options, such extensions would not have any impact on the current SIB1 message building and legacy UEs.
The chief advantage of this solution is its simplicity. It would introduce SIB1bis with minimal implementation and standardization effort. A possible disadvantage is that it assumes that the SIB1 and SIB1bis contents are very similar and hence it does not allow very much restructuring (or optimizations) of the message. This disadvantage aspect is aimed to be addressed by the other two proposals.
2.3.2 Option 2: Define a new root element but reuse extensions
Another possible option is to specify a new root element differently from the current SIB1. In order to help the maintenance and evolution of the message, the SIB1bis could share the extensions of SIB1. This means that the SIB1bis would include SIB1’s late and ordinary non-critical extensions
SystemInformationBlockType1-v890-IEs::=
SEQUENCE {

lateNonCriticalExtension

OCTET STRING (CONTAINING SystemInformationBlockType1-v8h0-IEs)

OPTIONAL,

nonCriticalExtension

SystemInformationBlockType1-v920-IEs
OPTIONAL

}

The benefit of this option is that the root element could be redefined e.g. by removing mandatory present fields that are not needed in SIB1bis thereby reducing the message size. A question arises whether the size reduction is significant enough to motivate such an optimization. It is a bit hard to quantify the alleged gains at this point of time because the discussion on the message content is still on-going but it is possible to infer something from the following RAN2#90 agreement
	Agreements
1
The UE determines the TBS of SIB1x based on information in MIB (not a single fixed TBS)

The indication of block sizes up to 1000 bits by using one octet granularity requires 7 bits but there are only 10 spare bits in MIB. It is very unlikely that so many spare bits will be used for the size indication because some spare bits are needed for other purposes as well. It is more realistic to assume that something like 3 or 4 bits could be used for the indication. This means that the granularity must increase up to several octets. Therefore the potential size reduction gain should be roughly twice the block size indication granularity to justify adoption of this option. So far there are no mandatory present fields in the current SIB1 definition that are very large, e.g. ten octets, assuming that all the mandatory present lists are populated to their minimum sizes. It is therefore difficult to see how it could be possible to obtain very significant message size reduction gains.
In conclusion, the potential gains do not seem to motivate adopting this solution. If a mandatory present field in the current SIB1 syntax is not needed in SIB1bis, it still seems to be preferable to use the current SIB1 structure and specify that the field is ignored upon the reception of SIB1bis rather than to define a completely new “optimized” structure.
2.3.3 Solution 3: Integrate extensions
Even though the optimization of root element does not seem be well motivated, it could be motivated to define a new structure in order to optimize the extensions. For example, the current SIB1 extensions could be integrated. This kind of optimization is already mentioned in the RAN2#90bis meeting minutes,

	Agreements
6.
Can consider merging the extensions of legacy IEs which were added in different specification versions (e.g. cellSelectionInfo with cellSelectionInfo-v920, cellSelectionInfo-v1130 and cellSelectionInfo-v1250; or freqBandIndicator with freqBandIndicator-v9e0; or tdd-Config with tdd-Config-v1130; or multiBandInfoList with multiBandInfoList-v9e0; or ul-CarrierFreq with ul-CarrierFreq-v9e0, specialSubframePattern and specialSubframePattern-v1130) in order to reduce the ASN.1 overhead but carefully review the impact on procedural text referencing the current fields.

The downside is that the SIB1bis extensions would be evolved and maintained in parallel with the extensions of SIB1, which would complicate both implementation and standardization of the feature. So the question is how much there is overhead in the extensions and whether the gain from extension integration justifies the required effort.
As already mentioned, all extension fields are optional and therefore every integrated extension removes one optionality bit. These improvements are not expected to be very remarkable because so far there is only a handful of non-critical extensions and not that many extension fields. It is therefore necessary to look into the detailed content of the extensions to see if there is something more to gain.
The integration of

cellSelectionInfo

SEQUENCE {

q-RxLevMin

Q-RxLevMin,

q-RxLevMinOffset

INTEGER (1..8)

OPTIONAL
-- Need OP

},

together with
CellSelectionInfo-v920 ::=

SEQUENCE {

q-QualMin-r9

Q-QualMin-r9,

q-QualMinOffset-r9

INTEGER (1..8)

OPTIONAL
-- Need OP

}

CellSelectionInfo-v1130 ::=

SEQUENCE {

q-QualMinWB-r11

Q-QualMin-r9

}
CellSelectionInfo-v1250 ::=

SEQUENCE {

q-QualMinRSRQ-OnAllSymbols-r12

Q-QualMin-r9

}

does not make very much difference because all these extensions introduce new fields, i.e. new content. So they are not extension fields to each other and hence there is, apart from the optionality bits, nothing to gain.
In turn, the integration of the following fields
FreqBandIndicator ::=

INTEGER (1..maxFBI)

FreqBandIndicator-v9e0 ::=

INTEGER (maxFBI-Plus1..maxFBI2)

based on the below defined ranges

maxFBI

INTEGER ::= 64
-- Maximum value of fequency band indicator

maxFBI-Plus1

INTEGER ::= 65
-- Lowest value extended FBI range

maxFBI2

INTEGER ::= 256
-- Highest value extended FBI range

would be meaningful because it would turn two fields with small ranges into one field with a large range. But there is no difference with respect to the number of encoded bits whether two small fields or one large field is encoded. It takes exactly as many bits to encode one field with 64 code points and another field with 192 code points than to encode one field that contains 256 code points. So the only gain is that one optionality bit could be removed.
The integration of
TDD-Config ::=

SEQUENCE {

subframeAssignment

ENUMERATED {

sa0, sa1, sa2, sa3, sa4, sa5, sa6},

specialSubframePatterns

ENUMERATED {

ssp0, ssp1, ssp2, ssp3, ssp4,ssp5, ssp6, ssp7,

ssp8}

}

together with

TDD-Config-v1130 ::=

SEQUENCE {

specialSubframePatterns-v1130

ENUMERATED {ssp7,ssp9}
}
is expected to remove 2 bits because the specialSubframePatterns field has 9 code points and therefore it is encoded with 4 bits. The fields could be integrated by using 4 bits encoding because 4 bits can represent 16 code points and thus accommodate both the original field and the extension field. So the one bit encoding of the –v1130 extension field could be avoided. In addition, one optionality bit could be removed.
The integration of the following lists
MultiBandInfoList ::=
SEQUENCE (SIZE (1..maxMultiBands)) OF FreqBandIndicator

MultiBandInfoList-v9e0 ::=
SEQUENCE (SIZE (1..maxMultiBands)) OF MultiBandInfo-v9e0

MultiBandInfo-v9e0 ::=

SEQUENCE {

freqBandIndicator-v9e0

FreqBandIndicator-v9e0

OPTIONAL
-- Need OP

}

does not seem to be possible at all because one list has an optionally present instance whereas the other one populates values for all instances.
One could argue that it should be possible to remove the late non-critical extension container. The container has roughly 2 octets auxiliary information generated by UPER encoding, which is not negligible. But it could also be questioned whether the removal of this container would be a real permanent improvement or not because late non-critical extension containers are needed in all messages and sooner or later they are expected to be be used anyway.
Similar to the analysis of option 2, the overhead improvements does not seem to be significant and therefore the gains are not sufficiently large to justify adopting this option. It is therefore proposed to adopt option1, i.e. reuse the current SIB1 structure.
Proposal 3 Use SIB1 structure for SIB1bis.
2.4 Fields
The introduction of a new SIB instance with similar type of content as another SIB instance requires careful handling of fields because the UE sometimes switches between the SIBs. It needs to be resolved how the UE shall handle the situation where fields are shared between two SIBs. One possible solution is to specify that all fields with the same identifier name are considered as the same field even if they are present in different SIB instances, i.e. fields are defined uniquely. This essentially means that the UE deletes the whole SIB1 whenever it acquires SIB1bis (and vice versa) because whenever it acquires either SIB1 or SIB1bis new value replaces the old one and absent field is released (as usual) if it is specified as Optional Release (OR). This is captured in the proposals below.
Proposal 4 The UE shall consider all fields with the same identifier name as the same field even if the fields are present in different SIB instances.

Proposal 5 Whenever the UE acquires SIB or SIB1bis new field value shall replace the old one and absent field shall be released if specified as Optional Release (OR).

In that way, the UE cannot have two “copies” of the same field and field handling ambiguities are avoided.
Given that the SIBs share the same SIB1 syntax, they share SIB1 definition of presence bits for the fields. It is possible that all mandatory present (SIB1) fields are not needed for the SIB1bis even though they need to be transferred in the new SIB instance if SIB1 syntax specifies them mandatory present. If there are such mandatory present fields they shall be ignored by the UE and any earlier acquired value of the field shall be deleted. This should be specified in field descriptions, e.g. the UE shall ignore the field upon the reception of SIB1bis and delete any stored value of the field.

Proposal 6 If a mandatory present field is not needed for SIB1bis, the UE shall ignore it and delete any stored value of the field.
Optional SIB1bis-specific (or SIB1-specific) fields could be added as extensions to the SIB1 definition and they do not need to be included in both SIB1 and SIB1bis, e.g. conditioning tags could be used. In that way, it is possible to have different extension in the SIBs even if their root elements are identical. There should not be any extension field handling ambiguities because the need code (OR) should release the extension field whenever the UE switches between SIB instances.
2.5 Procedures
The procedures may need to distinguish between SIB1 and SIB1bis. A list of potentially impacted procedures is presented below.
	Subclause
	Procedure
	Comments

	5.2.1.1
	General
	

	5.2.1.2
	Scheduling
	

	5.2.1.3
	System information validity and notification of changes
	

	5.2.1.4
	Indication of ETWS notification
	

	5.2.1.5
	Indication of CMAS notification
	

	5.2.1.6
	Notification of EAB parameters change
	

	5.2.2.3
	System information required by the UE
	

	5.2.2.4
	System information acquisition by the UE
	

	5.2.2.5
	Essential system information missing
	

	5.2.2.7
	Actions upon reception of the SystemInformationBlockType1 message
	

	5.2.3
	Acquisition of an SI message
	

	5.3.2.3
	Reception of the Paging message by the UE
	

	5.3.3.4
	Reception of the RRCConnectionSetup by the UE
	

	5.3.3.6
	T300 expiry
	New timers may be needed but probably perhaps it is possible to reuse existing procedures

	5.3.5.3
	Reception of an RRCConnectionReconfiguration not including the mobilityControlInfo by the UE
	Use RRCConnectionReconfiguration both with and without MobilityControInfo?

	5.3.5.4
	Reception of an RRCConnectionReconfiguration including the mobilityControlInfo by the UE (handover)
	Use RRCConnectionReconfiguration both with and without MobilityControInfo?

	5.8.4.3
	Reception of the MBMSCountingRequest message by the UE
	

	5.8.5.4
	Actions related to transmission of MBMSInterestIndication message
	

	5.9.1.3
	Reception of the RNReconfiguration by the RN
	

It should be noted that all procedures reference SIB1 with it type definition.

Observation 1 RRC procedures reference SIB1 with the type definition.
This is very useful because it means that sometime a general statement in the beginning of the procedure could clarify that SIB1bis is handled in the same manner as SIB1 unless stated otherwise. This may simplify the procedural specification somewhat.
3 Conclusion

In section 2 we made the following observations:
Observation 1
RRC procedures reference SIB1 with the type definition.

Based on the discussion in section 2 we propose the following:
Proposal 1
Create an extension to BCCH-DL-SCH message class.
Proposal 2
Denote the field and type identifiers as systemInformationBlockType1bis-r13 and SystemInformationBlockType1bis-r13 respectively.
Proposal 3
Use SIB1 structure for SIB1bis.
Proposal 4
The UE shall consider all fields with the same identifier name as the same field even if the fields are present in different SIB instances.
Proposal 5
Whenever the UE acquires SIB or SIB1bis new field value shall replace the old one and absent field shall be released if specified as Optional Release (OR).
Proposal 6
If a mandatory present field is not needed for SIB1bis, the UE shall ignore it and delete any stored value of the field.

4 References

[1] R2-041253, The ASN.1 definition of IE "SysInfoType5bis", RAN WG2#42, Montreal, Canada, 10 – 14 May 2004

5/8

