3GPP TSG RAN WG2#67BIS

R2-096208
Miyazaki, Japan, 12th – 16th OCTOBER
Agenda Item:
6.8
Souce:

Samsung, Motorola, CATT
Title:

Selection of the proper root sequence index for RACHO
Document for:
Discussion and decision
1. Introduction
Neighbouring cells’ root sequence index information is used as an input parameter to determine the proper root sequence index of a cell [1]. In this document, we would like to see more details on the generation of RACH preambles and whether this information only should be sufficient to determine the proper root sequence index of a cell.

2. Discussion
64 RACH preambles normally are derived from one or more of 838 root sequences, from which a cyclic shift value as specified by a Ncs configuration from 0 – 15 as shown in the table_1 is applied. To inform the UE of how to generate RACH preambles, the following information is signaled by RRC:

1) rootSequenceIndex: INT (0..837)

· Indicate the starting root sequence out of 838 root sequences

2) highSpeedFlag: Boolean

· Indicate whether unrestricted set or restricted set is applicable for Ncs value

3) zeroCorrelationZoneConfig: INT (0..15)

· Indicate Ncs configuration index in the table_1, i.e. index for the real value of the cyclic shift separation between consecutive RACH preambles
	
[image: image1.wmf]CS

N

 configuration
	
[image: image2.wmf]CS

N

 value

	
	Unrestricted set
	Restricted set

	0
	0
	15

	1
	13
	18

	2
	15
	22

	3
	18
	26

	4
	22
	32

	5
	26
	38

	6
	32
	46

	7
	38
	55

	8
	46
	68

	9
	59
	82

	10
	76
	100

	11
	93
	128

	12
	119
	158

	13
	167
	202

	14
	279
	237

	15
	419
	-

Table_1: Ncs for preamble generation (preamble formats 0-3)
Figure_1 describes the example of how to make 64 RACH preambles with the signaled information above. Note that multiple root sequences can be used in a cell dependent on the value of Ncs. For example, if zeroCorrelationZoneConfig is signaled as ‘9’ and highSpeedFlag is set as False, 5 root sequences are occupied to generate 64 RACH preambles. Considering the length of the root sequence is 839, the needed number of root sequences in a cell would be ceil (((64 – 1) * Ncs value +1) / 839).
[image: image3.wmf]Root sequence

#

0

Root sequence

#

300

Root sequence

#

301

Root sequence

#

302

……

……

Root sequence

#

837

Root sequence

#

303

Root sequence

#

304

rootSequenceIndex

:

300

Ncs cyclic shifted

sequence

RACH preamble

_

0

(

CS

=

0

)

z

e

r

o

C

o

r

r

e

l

a

t

i

o

n

Z

o

n

e

C

o

n

f

i

g

:

9

h

i

g

h

S

p

e

e

d

F

l

a

g

:

F

a

l

s

e

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

Ncs

=

59

…

…

Ncs cyclic shifted

sequence

Ncs

=

59

RACH preamble

_

1

(

CS

=

59

)

RACH preamble

_

2

(

CS

=

118

)

RACH preamble

_

14

(

CS

=

826

)

Ncs

=

12

Ncs

=

47

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

RACH preamble

_

15

(

CS

=

46

)

RACH preamble

_

16

(

CS

=

105

)

Ncs cyclic shifted

sequence

RACH preamble

_

28

(

CS

=

813

)

Ncs

=

25

...

Ncs

=

8

Ncs cyclic shifted

sequence

Ncs cyclic shifted

sequence

Ncs

=

59

Ncs

=

59

…

…

Ncs

=

59

RACH preamble

_

58

(

CS

=

7

)

RACH preamble

_

59

(

CS

=

66

)

Ncs cyclic shifted

sequence

RACH preamble

_

63

(

CS

=

302

)

Figure_1: Generation of 64 RACH preambles
To determine the proper starting root sequence as SON-RACH operation, the root sequences to be used in a cell should avoid the root sequences being used in the neighboring cells if the same frequency resource is reused. Otherwise, interference problem will be raised. For example, according to the figure_1, root sequences #300 ~ #304 should not be used in the neighboring cells.

Based on [1], only the rootSequenceIndex being used in the neighboring cells is defined as the input parameter to choose the proper rootSequenceIndex to be used in a cell. However, in the case, an eNB cannot know how many root sequences from the starting root sequence are really used in the neighboring cells. As a result, a wrong value can be chosen as the rootSequenceIndex for a cell.
Consideration_1: with only rootSequenceIndex being used in the neighboring cells, an eNB cannot know how many root sequences from the starting root sequence are really used in the neighboring cells.

One can say consideration_1 would not be an issue if an eNB determined the rootSequenceIndex to be used in a cell based on the worst case assumption, i.e. maximum Ncs value is applied. According to [2], the worst case assumption would be when the Ncs value is 0 in an unrestricted set. In the case, only one RACH preamble is generated from one root sequence. So in the worst case, 64 root sequences would be assumed and in the case, we can only distinguish 13 neighboring cells, i.e. 838 (total number of root sequences) / 64. Considering upto 32 neighboring cells’ specific information can be signaled as Measurement Configuration, this approach would not be scalable enough.
With a consideration_1, we think the simplest solution would be that in addition to rootSequenceIndex, zeroCorrelationZoneConfig and highSpeedFlag being used in the neighboring cells should be also signaled. Then, an eNB can calculate the exact range of root sequences used in a neighboring cell just like figure_1.
Proposal_1: in addition to the rootSequenceIndex used by neighboring cells, the zeroCorrelationZoneConfig and highSpeedFlag being used in the neighboring cells should be input parameters to choose the proper rootSequenceIndex to be used in a cell.

3. Conclusion
In this contribution, we see more details on the generation of RACH preambles. Based on that, we would like to propose that in addition to the rootSequenceIndex used by neighboring cells, the zeroCorrelationZoneConfig and highSpeedFlag being used in the neighboring cells should be input parameters to choose the proper rootSequenceIndex to be used in a cell.

If agreeable, we are happy to make either an LS to RAN3 to inform the decision or a TP for 36.902 directly.

4. Reference

[1] TR36.902v1.2.0
E-UTRAN Self-configuring and self-optimizing network use cases and solutions
[2] TS36.211v8.7.0
E-UTRA Physical Channels and Modulations

_1233508093.unknown

