3GPP TSG-RAN WG2 meeting #30

R2-021588
June 24th – 28th, 2002

Turin, Italy
Agenda item:
9.2.1

Source:
Qualcomm

Title:
Transport Block Size Set definition

Document for:

Discussion, Decision

1.
Introduction
This document provides an alternative method for selecting the set of transport block sizes that allows, when the RLC PDU size is selected appropriately, to require only very limited amounts of padding if any.

2.
Layer 2 Background

2.1

RLC functions and properties

In R’99 the signaling allows to configure RLC PDU sizes with any value from 0 to 4992 in units of bits, although for AM and UM the RLC PDU size has to be a multiple of 8 bits.

In AM and UM, which are the two modes used in conjunction with the HS-DSCH, RLC performs segmentation and concatenation. Therefore, the only constraint on the RLC PDU size is the approximate size of higher layer SDUs, which should be taken into account in order to limit the amount of RLC padding introduced. This constraint should only impact the order of magnitude of the RLC PDU size rather than its exact value. Therefore, as is now the case for R’99 channels, the RLC PDU size should be selected based on physical layer constraints alone.

Of course, if it is desirable to perform channel type switching between DCH and HS-DSCH transport channels, the constraints from both types of physical channels would need to be taken into account. If the optimum RLC PDU size for the two is different, there are two possibilities:

Compromise on the selection of the PDU size

The maximum RLC PDU size currently used in default RABs for 384kbps channels (it is not expected that anyone would support higher than that when HSDPA is available) defined in [34.108] is currently 320 bits. This value does not hold some particular magical properties and could easily be substituted for either 256 or 512 bits. Indeed, all the available coding rates (384kbps, 128kbps, 64kbps, etc.) can all be divided by the payload sizes being proposed here. The only problem is that tests are defined based on these default RABs and that operators may not feel comfortable in changing these until UE implementations are robust. Of course, it is assumed that this will be the case by the time Rel-5 networks start appearing.

Note also that imposing in HSDPA the RLC PDU sizes used in R’99 will result in un-necessarily high overhead from the RLC header. The 320 bit RLC PDU quoted earlier would for example result in 5% overhead, which is un-necessary considering how high the data-rates expected from HSDPA are.

Use different RLC PDU sizes for the different types of transport channel

Since in AM a change in the RLC PDU size would require a re-establishment of the RLC entity, leading to the loss of the data in the re-transmission buffers, it would not make sense to use different RLC PDU sizes if channel-type switching occurs continuously. However, there does not seem to be a very strong case for performing channel type switching. Indeed, it seems that whether to use a DCH or HS-DSCH should be mostly based on the QoS requirements of the applications. The HS-DSCH makes for more efficient transmission over the air, but requires that the application have some tolerance to delay, whereas the DCH is not as efficient but can offer delay guaranties. Our assumption is that the choice between the two would be performed at the beginning of the call and that the HS-DSCH would be used for all the applications that have any kind of delay tolerance and that the DCH would be used for all the others.

There are three reasons why channel type switching could be performed after that. The first is that the QoS requirements of the application change. This is regarded as a rather unlikely scenario and is not expected to happen often enough as to cause problems.

The second is that the channel conditions change leading to one channel type being more appropriate than the other. This is also unlikely. If the RB is mapped onto DCH then it means that it does not have enough delay tolerance to be sent on the HS-DSCH and if the conditions are such that the HS-DSCH does not have enough resources to schedule the user with reasonable delay, then it is unlikely that the system has enough resources to allocate the user a dedicated channel.

Finally, the third is that the UE is reaching an area where HSDPA becomes available or unavailable. It is likely that the HSDPA coverage will be patchy at the beginning of the service, but it is not expected that the user would be going in and out of coverage all the time. Therefore, again this does not seem to be a big deal.

Therefore, we conclude that both of the methods outlined above would allow the network to select RLC PDU size used under the HS-DSCH based on the choice of TB sizes rather than what is currently defined in the R’99 default RABs.

2.2

MAC-d PDU formats

The MAC-d is retained in Rel-5 as it is in R’99. When logical channel multiplexing onto the same transport channel is used, the MAC-d adds a 4 bit header to every RLC PDU, otherwise it does not add any overhead. Therefore, the MAC-d PDU size when configured below AM and UM RLC entities is of the form:

· With MAC-d multiplexing: k * 8 bits + 4 bits

· Without MAC-d multiplexing: k * 8 bits

2.3

HS-PDSCH payload formats

The MAC-hs concatenates together a number of MAC-d PDUs and then adds in front of them a MAC-hs header. This header has variable length depending on the number of different PDU sizes, which are concatenated together. The base MAC-hs header is made up of 21 bits and every extension requires an extra 11 bits. To the MAC-hs PDU, the physical layer appends a 24 bit CRC.

Therefore, the HS-PDSCH payload is always of the form:

· With MAC-d multiplexing: 24 + 21 + m * 11 + n * k * 8bits

· Without MAC-d multiplexing: 24 + 21 + m * 11 + n * (k * 8bits + 4bits)

Therefore, if the payloads are selected appropriately in the form: 24 + 21 + m * 11 + p * 8bits and the RLC PDU size selected in conjunction with the RLC PDU size, it is possible to not have any padding at all when MAC-d multiplexing is not performed and a PDU size that requires at most 4 bits per RLC PDU.

3.
Proposal

It is proposed to conceive of a set of TB sizes with following properties:

· Easy to generate at the UE (either small enough for a table <64 or obtained through simple integer calculation).

· Take advantage of the properties of MAC-hs SDUs and the MAC-hs header in order to reduce the amount of padding introduced.

· Allow for coding rates down to ¼ for 1 code (TB size of) and up to ¾ for 15 codes (TB size of).

· Have high overlap between different numbers of codes, ideally a single TB size set for all numbers of codes and modulations.

3.1

Algorithm for generation of TB sizes

For each number of codes and modulation, we define the set of TB sizes, which could be used for initial transmissions as:

Tbsize = 24 + M + L * 2k+n bits
Where:

· 24 is the size of the CRC introduced by the physical layer.

· M is the maximum size of the MAC-hs header that the network is planning on using.

· kQPSK = floor(log2(NbCodes)) and k16QAM = 2 * floor(log2(NbCodes))
· n is selected based on the number of different payload sizes that we want to obtain
· L takes any integer value that gives a coding rate within the specified limits:

[Rmin * 16 / 2560 * 3 * mod_order * NbCodes – (24 + M)] / 2k+n ≤ L

and L ≤ [Rmax * 16 / 2560 * 3 * mod_order * NbCodes – (24 + M)] / 2k+n
The entire set of TB sizes is the superset of the TB sizes determined for each set of codes and modulation (see [1]).

The result is a limited number of increment values between TB size, which makes it very simple to store and reproduce in the mobile. The number of TB sizes is small enough that it is not necessary to make the signaling dependent on the number of codes or modulation in order to be limit the size to 6 bits.

Based on this design, if the MAC-hs PDU size is a power of two then the amount of padding is zero for as long as the increment is smaller than the MAC-hs PDU size and limited beyond that. However, the MAC-hs PDU can only be a power of two when MAC-d multiplexing is not applied. In the case where MAC-d multiplexing is applied, this method would incur padding of an extra 4 bits per MAC-d PDU.

Example 1

The first case we will consider corresponds to the following values for the parameters defined above:

· M = 21

· n = 6

This means that the payload sizes are of the form:

24 + 21 + 64 * L * 2k bits = 45 + 64 * L * 2k bits.

Based on the method described above, the increments for each number of codes and modulation is outlined below:

	Mod
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	QPSK
	64
	128
	128
	256
	256
	256
	256
	512
	512
	512
	512
	512
	512
	512
	512

	16QAM
	128
	256
	256
	512
	512
	512
	512
	1024
	1024
	1024
	1024
	1024
	1024
	1024
	1024

Based on these values, the total number of payload sizes is equal to 55 (see [1]). Therefore, using the 6 bits of signaling it would be possible to signal all the possible payload sizes independently of either the number of codes or the modulation.

The resulting padding depends on the number of codes and on the multiplexing option. For simplicity we will assume that there is only one RLC PDU size per transmission. Using multiple PDU sizes would require selecting the value M to match the worse case and would therefore result in additional padding when this multiplexing option is not used. However, since this overhead is independent of the number of PDUs, its contribution becomes negligible as soon as the TB size increases. On the other hand, when MAC-d multiplexing is applied, there are four bits of padding incurred per RLC PDU. Therefore, the fraction of overhead is constant independently of the TB size and needs to be taken into account.

	MAC-d Payload
	No MAC-d MUX (only MAC-hs padding)
	With MAC-d MUX (only MAC-hs padding)
	Just AM RLC Header

	
	RLC Payload
	Worse case/ Ave Padding
	RLC Payload
	Padding
	

	64
	64 bits
	8.0%/2.9%
	56 bits
	15.1%/10.0%
	25%

	128
	128 bits
	7.3%/1.5%
	120 bits
	10.6%/4.8%
	12.5%

	256
	256 bits
	6.3%/1.2%
	248 bits
	7.9%/2.8%
	6.25%

	512
	512 bits
	4.3%/0.54%
	504 bits
	5.1%/1.34
	3.125%

	1024
	1024 bits
	0%/0%
	1016 bits
	0.39%/0.39%
	1.56%

It can be observed that the padding associated with the payload sizes is small compared to the overhead introduced by RLC. Also, given that HSDPA is expected to be used for high data-rate applications, it is very unlikely that a payload size of less than 256 bits will ever be used. In that case, when no MAC-d multiplexing is done the average padding is 1.5%, which is in the order of what was claimed in [4].

For arbitrary MAC-d payload sizes, the comparison between this scheme and a straight-out logarithmic sampling is as follows:

	
	Proposed Algorithm with 55 entries (could be extended to 64)
	Proposed Algorithm for payload sizes > 500 bits
	Pure logarithmic sampling with 64 TB sizes

	Worse case
	36%
	11%
	7.7%

	Average
	3.4%
	3.3%
	3.85%

As can be seen from the entries above, even when using arbitrary RLC PDU sizes, the average padding rate is fairly close to what would be obtained using a purely logarithmic quantization scheme.

The resulting set of payloads can be stored by the mobile in the following form:

	Base, Increment
	Nb for 1st increment
	Nb for 2nd increment
	Nb for 3rd increment
	Nb for 4th increment

	173, 64
	11
	11
	12
	12

	Cummulative (optional)
	11
	22
	34
	46

Note that it is not necessary to provide the number of values included based on the last increment. This is the solution that we would recommend based on the trade-off between complexity and overhead. It only requires 6 bits of signaling and therefore does not require to have different TB size sets for different numbers of codes.

Example 2

This is an alternative in the case where the padding overhead associated with the first solution is deemed too high. It is in essence very close to the first proposal except a smaller increment is used as the base payload increment. The corresponding configuration parameters are:

· M = 21

· n = 5

This means that the payload sizes are of the form:

24 + 21 + 32 * L * 2k bits = 45 + 32 * L * 2k bits.

Based on the method described above, the increments for each number of codes is outlined below:

	Mod
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	QPSK
	32
	64
	64
	128
	128
	128
	128
	256
	256
	256
	256
	256
	256
	256
	256

	16QAM
	64
	128
	128
	256
	256
	256
	256
	512
	512
	512
	512
	512
	512
	512
	512

Based on these values, the total number of payload sizes is equal to 110 (see [1]). Therefore, 7 bits of signaling would be required to indicate the value independently of the number of codes and the modulation. In order to reduce the number of bits required, it would be necessary to make the set of payloads available a function of the number of codes. However, we would regard this as an unnecessary complication considering how small the additional overhead would be.

Again, we will make the same assumptions as before to determine what the resulting padding would be:

	MAC-d Payload
	No MAC-d MUX (only MAC-hs padding)
	With MAC-d MUX (only MAC-hs padding)
	Just AM RLC Header

	
	RLC Payload
	Worse case/ Ave Padding
	RLC Payload
	Padding
	

	64
	64 bits
	3.8%/1.0%
	56 bits
	10.9%/8.1%
	25%

	128
	128 bits
	3.2%/0.63%
	120 bits
	6.5%/4.0%
	12.5%

	256
	256 bits
	2.2%/0.28%
	248 bits
	3.8%/1.88%
	6.25%

	512
	512 bits
	0%/0%
	504 bits
	0.8%/0.8%
	3.125%

	1024
	1024 bits
	0%/0%
	1016 bits
	0.39%/0.39%
	1.56%

For RLC PDU size of 512 bits, there is no padding required at all when no MAC-d multiplexing is performed. For any of the proposed RLC PDU sizes, the padding level is less than what is represented by the AM RLC header overhead.

For arbitrary MAC-d payload sizes, the comparison between this scheme and a straight-out logarithmic sampling is as follows:

	
	Proposed Algorithm with 110 entries (could be extended to 128)
	Proposed Algorithm for payload sizes > 500 bits
	Pure logarithmic sampling with 128 TB sizes

	Worse case
	18%
	5.9%
	3.6%

	Average
	1.75%
	1.65%
	1.8%

The entire set of payloads can be generated at the mobile based on the following information:

	Base, Increment
	Nb for 1st increment
	Nb for 2nd increment
	Nb for 3rd increment
	Nb for 4th increment

	173, 32
	9
	25
	23
	24

	Cummulative (optional)
	19
	44
	67
	91

In this example, we are illustrating how the design method can be extended to larger TB size sets and the corresponding performance benefits. With these numbers, it would take 7bits to make the signalling completely independent from the number of codes and modulation. If such a scheme were to be used it would be necessary to either extend the number of bits or making the set of TB sizes supported dependent on the number of codes used for the transmission. It would have to be assumed that the number of codes does not vary significantly between the initial transmission and subsequent re-transmissions.

Example 3

This is an alternative in the case where the padding overhead associated with the first solution is deemed too high. It is in essence very close to the first proposal except a smaller increment is used as the base payload increment. The corresponding configuration parameters are:

· M = 21

· n = 4

This means that the payload sizes are of the form:

24 + 21 + 16 * L * 2k bits = 45 + 16 * L * 2k bits.

Based on the method described above, the increments for each number of codes is outlined below:

	Mod
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	QPSK
	16
	32
	32
	64
	64
	64
	64
	128
	128
	128
	128
	128
	128
	128
	128

	16QAM
	32
	64
	64
	128
	128
	128
	128
	256
	256
	256
	256
	256
	256
	256
	256

Based on these values, the total number of payload sizes is equal to 220 (see [1]). Therefore, 8 bits of signaling would be required to indicate the value independently of the number of codes and the modulation. In order to reduce the number of bits required, it would be necessary to make the set of payloads available a function of the number of codes. However, we would regard this as an unnecessary complication considering how small the additional overhead would be.

Again, we will make the same assumptions as before to determine what the resulting padding would be:

	MAC-d Payload
	No MAC-d MUX (only MAC-hs padding)
	With MAC-d MUX (only MAC-hs padding)
	Just AM RLC Header

	
	RLC Payload
	Worse case/ Ave Padding
	RLC Payload
	Padding
	

	64
	64 bits
	1.7%/0.32%
	56 bits
	8.8%/7.4%
	25%

	128
	128 bits
	1.1%/0.15%
	120 bits
	4.4%/3.4%
	12.5%

	256
	256 bits
	0%/0%
	248 bits
	1.6%/1.6%
	6.25%

	512
	512 bits
	0%/0%
	504 bits
	0.8%/0.8%
	3.125%

	1024
	1024 bits
	0%/0%
	1016 bits
	0.39%/0.39%
	1.56%

For RLC PDU size of 512 bits, there is no padding required at all when no MAC-d multiplexing is performed. For any of the proposed RLC PDU sizes, the padding level is less than what is represented by the AM RLC header overhead.

For arbitrary MAC-d payload sizes, the comparison between this scheme and a straight-out logarithmic sampling is as follows:

	
	Proposed Algorithm with 220 entries (could be extended to 256)
	Proposed Algorithm for payload sizes > 500 bits
	Pure logarithmic sampling with 256 TB sizes

	Worse case
	8.6%
	3%
	1.8%

	Average
	0.9%
	0.9%
	0.9%

The entire set of payloads can be generated at the mobile based on the following information:

	Base, Increment
	Nb for 1st increment
	Nb for 2nd increment
	Nb for 3rd increment
	Nb for 4th increment

	173, 16
	38
	47
	49
	47

	Cummulative (optional)
	38
	85
	134
	181

In this example, we are illustrating how the design method can be extended to larger TB size sets and the corresponding performance benefits. With these numbers, it would take 7bits to make the signalling completely independent from the number of codes and modulation. If such a scheme were to be used it would be necessary to either extend the number of bits or making the set of TB sizes supported dependent on the number of codes used for the transmission. It would have to be assumed that the number of codes does not vary significantly between the initial transmission and subsequent re-transmissions.

3.2

Algorithm for deriving the TB size

The mobile would be configured with the following:

· base TB size;

· minimum increment value;

· table indicating how many TBs derived with the same algorithm should be used (as described above);

· beginning index for each number of codes;

This is a very small amount of information and it is recommended that at least some of the parameters (e.g. the base TB size which is dependent on the maximum MAC-hs header size) be configured by the network.

Below we provide an example of how the mobile would determine the TB size in the case of Example 1. Even though it is not needed in that case, we are introducing the concept of beginning index in order to illustrate how it works. Let i be the TB size index received in the control channel during the transmission and let k be the beginning index corresponding to the number of codes that was used:

· i = i + k;

· if (i<11)
 TBsize = i * 64

· else if (i<22)
 TBsize = k1 + (i - 10) * 128

· else if (i<34)
 TBsize = k2 + (i - 21) * 256

· else if (i<46)
 TBsize = k3 + (i - 33) * 512

· else
 TBsize = k4 + (i - 44) * 1024

· TBsize = TBsize + 301

· end

Where we can pre-compute:

· k1 = 10 * 64

· k2 = k1 + 11 * 128

· k3 = k2 + 12 * 256

· k4 = k3 + 12 * 512

Note that since all the multiplications are powers of 2, they can be very efficiently implemented in hardware.

4.
Conclusion

This document demonstrates that it is possible, by choosing the RLC PDU size and the MAC-hs TB size in a coordinated fashion, to achieve very limited padding, without requiring a large number of different payload sizes. Or again, at equal number of transport block sizes, to require much less padding. It also shows that even when the RLC PDU size is not selected appropriately, the resulting padding is still very reasonable. Therefore, if low rate channels were to use arbitrary RLC PDU sizes, the impact would be negligible.

The proposed method provides both better performance in terms of padding when the RLC PDU size is selected appropriately, and easier implementation than logarithmic quantization (if a larger number of payloads than what can be reliably fit in a table is selected).

7.
References

 [1]
TB size analysis v02.xls, Qualcomm

1
8

