Erreur! Il n'y a pas de texte répondant à ce style dans ce document.
6
Erreur! Il n'y a pas de texte répondant à ce style dans ce document.

3GPP RAN2, September 1999

Tdoc RAN WG2 99 c97

Source :

NORTEL

Subject :

Methodology report, improvement of section 10.2

This is just a first start. There are many things to add in order to (non exhaustive):

· Use CSN.1 more in line with its specification and its spirit;

· Provide better examples of alternative representation;

· Include the missing extensibility mechanisms.

10 Message transfer syntax specification

10.1 Selection of transfer syntax specification method

10.2 CSN.1 encoding for ASN.1 types

The following clauses specify the CSN.1 [6] specific default encoding for ASN.1 types. The rules specify one-to-one mapping from an abstract syntax to a transfer syntax.

10.2.1 Message structures

Message structures shall be encoded as follows:

· A choice of all the messages specified in a message table.

· Selection is done according to the identifier field values.

· Extensibility for the choice will be included so that any message can be decoded, with the assumption that the message is externally delimited, i.e., that lower layers provide in reception the length of the received PDU.
· All messages are considered are implicitly an extensible sequence of one element, the message content.
Example: Encoding of the XYZ-Message type in 9.1.2
<XYZ_Message> ::=

 { <id : 000000> <MessageA>

 | <id : 000001> <MessageB>

 | <id : 000010> <MessageC>
-- choice extensibility part
 ! <any string = no string>
 }
-- sequence extensibility part

<any string = null>
;

10.2.2 Boolean

A boolean type maps to one bit.
The representation convention is

Field
Value

0
False

1
True

Example: Encoding for the boolean type in 9.3.4
<Flag> ::=

 <BOOLEAN>

;

<BOOLEAN> ::=

 bit

;

10.2.3 Integer

An integer is represented by a fixed length bit string.

Representation:
An integer type is encoded as an UNALIGNED variant of a constrained whole number as specified in PER [5].

Explanation: Let "lb" be lower bound and "ub" be the upper bound of an integer type. A value "n" will be encoded as a the binary representation, MSB first, of the positive or null integer e = ("n" - "lb"), using the minimum number of bits necessary to represent the values in range.

Named numbers do not affect encoding.

If an integer type is marked as extensible as specified in 9.3.5 then the reception and emission value sets are defined separately.
It should be noted that the default extensibility method described above has particular properties, and special encoding should be used to obtain different properties.
Similarly, the default representation is not necessarily the more compact in average, and special encoding should be used to obtain different properties.
Example: Encodings for integer types in 9.3.5
<Counter> ::=

 bit(8)
-- n = 0..255, e = n-0 = 0..255

;

<SparseValueSet> ::=

 bit(4)
-- n = 0|3|5|6|8|11, e = n-0 = 0|3|5|6|8|11
 exclude {

 0001|0010|0100|0111|1001|1010|1100|1101|1111

 }

;

<SignedInteger> ::=
-- n = -10..10, e = n-(-10) = 0..20

 bit(5)
 exclude {

 10101|10110|10111|11000|11001|11010|11011|11100|11101|11110|11111

 }

;

<Status> ::=
-- n = 0..3, e = n-0 = 0..3
 bit(2)
;

<Extensible> ::=
-- n = 0..3, e = n-0 = 0..3, two spare bits

 <bit(4) = 00 bit(2);
<ExtensibleSparseValueSet> ::=

-- n = 0|3|5|6|8|11, e = n-0 = 0|3|5|6|8|11
 bit(4) = {bit(4)

 exclude {

 0001|0010|0100|0111|1001|1010|1100|1101|1111

 }

;

-- The following representations can be obtained only as special
-- encoding. This is not exhaustive.
<Elementary Huffman example> ::=

 0 bit(4)|

-- represents the range 0..15
 1 bit(8);

-- represents the range 16..271
<Other Huffman example> ::=

 0 1**;

-- the represented integer is the length of the bit string
-- extensibility examples

<No default extensible> ::=

 <spare bit>*2 bit(2);

<Another non default extensible> ::=

 0 bit(2) |

 {1 bit(4) = <no string>;
See also 10.3 for specialised encoding.

10.2.4 Enumerated

Enumeration values form a value set 'number of enumerations' elements.
They are represented as a fixed length bit string.
Each enumeration item is represented as the binary representation of its position in the list, starting with index 0 for the first element in the list. The representation uses the minimum number of bits necessary to represent all the values in a value set.

If an enumerated type is marked as extensible as specified in 9.3.6 then the reception and emission value sets are defined separately.

It should be noted that the default extensibility method described above has particular properties, and special encoding should be used to obtain different properties.

Example: Encodings for enumerated types in 9.3.6
<Enum> ::=

 { <a : 00>

 | <b : 01>

 | <c : 10>

 | <d : 11>

 }

;

<ExtendedEnum> ::=

 { <a : 000>

 | <b : 001>

 | <c : 010>

 | <d : 011>
 ! {bit(3) = <no string>;

-- The following representations can be obtained only as special

-- encoding. This is not exhaustive.

-- extensibility with comprehension required range (beware : this is the

-- concept of comprehension required as used in GSM or Q.931, not the

-- one described in the main part of the document

<SpecialExtendedEnum> ::=

 { <a : 0000>

 | <b : 0001>

 | <c : 0010>

 | <d : 0011>

 ! {1 bit(3) = <no string>;

10.2.5 Bit string

A fixed length bit string is represented identically by a fixed length bit string.
A variable length bit string is represented identically by a bit string preceded by a length field representing the length of the bit string, as described below.
A length field is encoded as an integer field of type INTEGER (lb..ub) where "lb" is the lower bound the of size constraint and "ub" is the upper bound.

Named bits do not affect encoding.

Example: Encodings for bit string types in 9.3.7
<FixedLengthBitStr> ::=

 bit(10)

;

-- length = 0..10, e = length-0 = 0..10

<VariableLengthBitStr> ::=

 <length : bit(4) exclude {1011|1100|1101|1110|1111}>

 bit * val(length)

;

<BitFlags> ::=

 bit(4)

;

-- Special encoding examples

-- extensibility can be obtained for a fixed bit string as follows

<Extensible fixed bit string> ::=

<Length : bit(3)>

bit*(10 + val(length)*8)

;

� Note that it is possible to specify one set of of bits in multiple ways in CSN.1. For example the following descriptions denote the same set of bits:

{000|001|010|011}

0 {0|1} {0|1}

0 bit(2)

This document contains a mapping from an ASN.1 type to an CSN.1 description. Other CSN.1 descriptions that denote the same bit set as presented in the document are also valid.

ETSI

