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1	Introduction
In RAN1 #87, LDPC was agreed as the eMBB coding scheme and some details of the LDPC design were agreed during Ran1 #NR Ad-Hoc meeting. According to the latest agreement [1], at least one base graph should have the 802.11n like dual diagonal structure (some variants still applicable) should be considered in the parity check matrix design.  
Working Assumption: 
· For at least one base graph, 
· the parity check matrix consists of five sub-matrices (A, B, C, D, E)
A

C
D
E
B

· A may contain systematic and parity bits
· B: 
· B is not necessarily square
· One of the columns has weight-three 
· The columns of B after the weight-three column have a dual diagonal structure, e.g.:
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· C is a zero matrix
· E is an identity matrix for the above base graph
· Other structures can be considered for other base graph(s), if any
· Can be revisited if another structure is shown to be superior in performance and complexity

Matrices B, C, and E are defined in the agreement and valid at least for one base graph. Referring to the number of base graphs, companies still considering different options and number of base graphs can be 1, 2, or 3. From our point of view, eMBB lower block size performance is an important aspect that we need to handle by introducing separate base graph for that range. 
Agreement:
· Number of base graphs NBG is FFS between 1, 2 and 3, considering the trade-offs
· If NBG >1, 
· Each base graph covers a different range of block sizes and/or code rates (not necessarily precluding partially overlapping ranges)
· FFS whether one range can be fully covered by another range

In addition to these discussions, it was also agreed that further evaluations are required to down select the final base graphs for the eMBB data channel. In particular, the following agreement was made, 
Conclusion:
· Evaluations at BLER of a single code block = 1e-2 (for performance comparison between codes) and 1e-4 (for the purpose of comparing the error floor performance of the codes)
· (Note that this does not preclude other comparison criteria)

In this contribution, we provide LDPC design for the eMBB data and provide simulation results considering all the agreements we highlighted above. 
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Code construction is mainly based on two proto-matrices to handle small and large block sizes that we expect in the eMBB scenario. In last few meetings, many companies showed that majority of the traffic in uplink might use shorter block sizes, where we think particular attention is required even with LDPC codes. The number of base graphs itself does not affect the implementation complexity, where implementation complexity mainly determined by the base graph dimensions, supported block sizes (or shift network configuration), row/column weights, and other related parameters. 
In the rest of the discussion, we use the following structure for the parity check matrix (PCM), H, which represents QC LDPC codes. 
 ,
where  is a cyclic-permutation matrix obtained from the zero matrix and the z by z cyclically shifted identity matrix to the right. Also,  often represented as a numerical entry in the matrix in the following discussion. 
According to the agreement below, the LDPC base graph that support Kmax should be limited to the minimum code rate of 1/3. However, other blocks can support much lower rates down to 1/5.  
Agreement:
· Base graph for supporting Kmax has minimum code rate Rmin,kmax = ~1/3 
· ‘~’ means approximately
· This does not preclude extending the same base graph to code rate lower than ~1/3 when supporting K< Kmax, provided that the number of variable nodes (after lifting) of any parity check matrix, Nmax, is not exceeded, where:
· Nmax = Kmax / Rmin,kmax + Nsys,punct
· Nsys,punct is the number of built-in punctured systematic bits
· Base graph for any info block sizes K has
· Rmin,k >= ~1/5, provided that Nmax is not exceeded

We follow the agreement and propose two base graphs for according to block sizes. The coding families are summarized in Table 1. 
Table 1: LDPC coding families
	Code Family
	Block sizes
	Max code rate
	Min code rate
	Sub-matrix dimension

	
	
	
	
	Min
	Max
	Granularity 

	1
	100 – 2000
	11/15
	11/43
	8
	182
	Select optimum sub-set within 8 - 182

	2
	2000 – 8192
	8/9
	1/3
	56
	256
	56:1:128
128:2:192
192:4:256


2.1 	Family 1: Short block sizes
Family 1 is mainly designed such that it provides good performance for lower code block sizes. The parity check matrix for Family 1 is shown in Figure 1. The highest code rate the base graph is 11/15 (0.73) and extended to the lowest rate of 11/43 (0.26). The codes are optimized for heavy shortening, puncturing and repetition. A blanking based extension is used to get the base graphs for different rates. 
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[bookmark: _Ref471658654]Figure 1. The parity check matrix for the smallest code rate.
To boost performance, we introduce additional non-negative entries for each matrix. The first matrix of size 4x15 becomes
[bookmark: _GoBack]  49 82 -1 28 55 39 94 34 84 28 66  0 -1 -1 -1
  40  2 62 77 37 22 44 78 39 49 41 60  0 -1 -1
   2 81 74 13 17 54  7 -1 -1 45 92 -1  9  0 -1
  -1 49 90 52 50 60 -1 92 19 -1 67  0 44 78  0

Here, some elements are blanked (or set to -1) when deriving the extended matrices. This helps to improve the performance of lower code rates. The next matrix, of size 8x19 is
  -1 82 -1 -1 55 -1 94 34 -1 28 66  0 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 37 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1
   2 -1 74 -1 17 -1  7 -1 -1 -1 92 -1  9  0 -1 -1 -1 -1 -1
  -1 -1 90 52 50 60 -1 92 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1
  -1  7 40 51 -1 -1 76 -1 -1 30 -1 -1 -1 88 47  0 -1 -1 -1
   6 -1 -1 -1 -1 56 -1 -1 70 -1 -1 -1 49 52 62 -1  0 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 60  3  0 -1
  -1  6 33 29 44 71  9 -1 -1 -1 -1 -1 -1 -1 -1 33 -1  6  0

Other extensions down-to lowest code rate is provided in the Annex I. The reason to define the matrices like these is that each code rate has its optimal check node degree distributions, and with the proposed structure, performance is optimized. Furthermore, these codes can be decoded by the same decoder, since they share the common structure. 
These codes support info block size K from 100 up to 2000. The matrices were designed with submatrix size 95. If smaller submatrix size is used, modulo lifting is applied. These codes are optimized for puncturing, and provide good performance for a wide range of code rates. 
Both CC and IR HARQ can be supported with the proposed matrices. Since these codes tolerate heavy puncturing, incremental redundancy is possible. An ordinary circular buffer can be used, but there is one limitation compared to turbo codes. We have to choose what matrix is used. This selection is a matter of link adaptation. Once selected, we stay within that matrix. In some situations, this limitation may impact IR gains. Further investigations on the gains we get one first transmission versus small losses in IR transmissions should be investigated. 
Overall, base graphs of Family 1 share common elements and can be decoded by the same decoder. The base matrix dimensions, shift network sizes are small which allows an efficient implementation.    
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes. The performance of the base matrix can be optimized by adopting blanking based extension. 
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support different block sizes.   

2.2 	Family 2: Larger block sizes 
Large code blocks should be used when supporting moderate to higher throughputs in the eMBB scenario. The implementation complexity of LDPC codes is mostly defined by the hardware requirements when decoding larger block sizes. Therefore, this requires implementation related considerations rather than just focusing on the performance of the codes.
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
2.2.1 	Code block support
This PCM family is mainly designed to support information block K >=2000. However, this does not have issues even to support lower range of block sizes. Nevertheless, we see that optimized approach we used in Family 1 is more suited to provide better performance at smaller block sizes. The PCM is attached with the contribution as a separate Excel file. In particular to maximum dimensions, the maximum cyclic-permutation value in the base matrix is fixed to 256, and the maximum support block size is 256*32=8192 bits. The base matrix can be viewed as an extended base graph which we believe providing more freedom when optimizing for performance. Different code block sizes are obtained using simple modulo operation. The code itself support finer granularity of sub-matrix dimension Z. However, to simplify implementation complexity, Z granularity equal to one is preferred between 56-to-128 shift sizes, the granularity of two is preferred for 128-to-192 shift sizes, and it can be four for shift sizes above 192. 
Proposal 4: The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix should be {8192, 256} to provide a good trade-off between performance and implementation complexity. 

2.2.2 	Code rate and HARQ support
In this PCM family, PCM for lower code rate are generated by extension from the PCM for higher code rate. The PCM family is a rate-compatible code as shown in Figure 2, so IR HARQ can be supported by transmitting more parity bits in retransmission.


Figure 2: Structure of the Family 2 base graph
The design target for highest supported code rate is 8/9. Some parity bits for rate 8/9 can be punctured to support higher code rates than 8/9. The information bits corresponding to the first 2*z columns are punctured, so the base matrix with total size as 66*98 can support the minimum code rate as 32/(98-2)=1/3. Repetition can be used to support lower code rate than 1/3.
The extension part is divided into multiple parts, with each part containing multiple rows. All these parts are generated by dividing one same vector into multiple rows so that the multiple rows are orthogonal to guarantee only one layer decoder is needed for each part. For each part, the one vector is firstly divided into multiple orthogonal rows, then a proper cyclic shift for the whole part is searched, and some columns are replaced by all -1 to guarantee good performance. The generated part can be extended by inserting some columns with all -1. In the generation, the same vector is used to guarantee the cyclic-permutation values in each part, with each part corresponding to one layer, are from the same set corresponding to the vector. Based on this structured design the shifting network part can be same or shared by multiple parts and requested optimization effort will be reduced. Cyclic shifting is used to search the good performance in freedom of low ratio of small cycles between parts corresponding to different layers. The processing can be as Figure 3.


Figure 3: An example for PCM generation based on same vector to generate different layer by division to multiple orthogonal rows and cyclic shift


2.2.3 	Implementation aspects  
When the base matrix is generated by dividing one vector to multiple orthogonal rows and cyclic shifting, the shifting network for layered decoder for multiple layers can be same and can be shared. In detail, one set of cyclic shifts can be used by many other layers. As shifting network does not need to be changed from layer to layer, the latency will be reduced. Further details on implementation aspects of the proposed code are discussed in [2]. 
Observation 1: The decoding latency and implementation efficiency can be improved based on the Family 2 base graph. 
Proposal 5: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency. 








3	Performance
3.1			Simulation assumptions
We use simulation parameters showed in Table 2 to provide results for BLER versus SNR for the proposed codes in Section 2. We also plot LDPC codes proposed in [3] for comparison purposes.

Table 2: Simulation parameters

	Channel*
	AWGN

	Modulation
	QPSK

	Coding Scheme
	LDPC
	LDPC – (R1-167889)

	Code rate
	1/5, 1/3, 2/5, 1/2, 2/3, 3/4, 5/6, 8/9

	Decoding algorithm**
	Offset min-sum
	Offset min-sum

	Info. block length*** (bits w/o CRC)
	100, 400, 1000, 2000, 4000, 6000, 8000 



Offset min-sum decoder with 0.22 offset parameter with 50 iterations is used in the simulations. 
3.2			Performance of short block size 
Figure 4 (a)-(d) shows simulation results for 100, 400, 1000, and 2000 information block sizes with for QPSK scheme. A similar performance to be expected for 64 QAM as it does not change the properties of codes. Modulo lifting is used to get different code blocks with required padding/puncturing and repetitions whenever required. These parameters used for simulation are provided in the attached excel data file.  
[image: ]
(a)
[image: ]
(b)
[image: ] 
(c)

[image: ]
(d)
Figure 4: BLER versus SNR for short blocks. (a) 100 info bits, (b) 400 info bits, (c) 1000 info bits (d) 2000 info bits
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Figure 5: IR HARQ performance
Figure 5 shows the simulated spectral efficiency (SE) as a function of SNR. We used QPSK, 16-QAM and 64-QAM as modulation methods, with incremental redundancy (IR) as the HARQ method. Our IR implementation is quite ideal: the number or retransmissions is not limited, and the feedback channel is delayless and error-free. We simulated the performance of matrices 1, 2, 3 and 8 separately for each modulation method, and selected the best.

Observation 2: The proposed short block PCM provide very good performance over a wider range of code rates and supports IR HARQ. 
3.3			Performance of larger blocks 
Figure 6 (a)-(d) shows simulation results for 2000, 4000, 6000, and 8000 information block sizes with for QPSK scheme. Modulo lifting is used for different block sizes while puncturing happens on systematic bits and from the end of the parity bits whenever required. As the matrix is limited to rate 1/3, code rate of 1/5 is obtained by repeating rate 1/3. 
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(d)
Figure 6: BLER versus SNR for large block (a) 2000 info bits, (b) 4000 info bits, (c) 6000 info bits, (d) 8000 info bits
Observation 3: The proposed large block PCM provide very good performance over a wider range of code rates and supports low error floor while providing good implementation benefits. 
4	Conclusion
In this contribution, we propose code construction details of LDPC for the eMBB data channel and we have following observations and proposals. 
Observation 1: The decoding latency and implementation efficiency can be improved based on the proposed Family 2 base graph. 
Observation 2: The proposed short block PCM provide very good performance over a wider range of code rates and supports IR HARQ. 
Observation 3: The proposed large block PCM provide very good performance over a wider range of code rates and supports low error floor while providing good implementation benefits.
Proposal 1: NR eMBB scenario requires a separate base graph to support lower block sizes. The performance of the base matrix can be optimized by adopting blanking based extension. 
Proposal 2: Optimal shortening/puncturing/repetition combination should be used with sub-matrix dimensions to support different block sizes.   
Proposal 3: LDPC codes for large block size should support good performance and implementation efficiency.
Proposal 4: The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix should be {8192, 256} to provide a good trade-off between performance and implementation complexity. 
Proposal 5: The proposed structured method should be considered in the PCM generation, e.g. one vector for generation of multiple layer and cyclic shift, to improve the implementation efficiency.
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Annex I
For family 1, the remaining extensions with blanking are given as following. 
The third matrix of size 12x23 is
  -1 82 -1 -1 55 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 37 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   2 -1 74 -1 17 -1  7 -1 -1 -1 92 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 17 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 60 -1  0 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 33 -1  6  0 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 47 39 -1  0 -1 -1 -1
  -1 36 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1
  46 -1 -1 -1 -1 -1 26 64 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1
  36 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 69 -1 61  0
The fourth is of size 16x27 is
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 92 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 39 -1  0 -1 -1 -1 -1 -1 -1 -1
  -1 36 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1
  36 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 12 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 29  0 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 43 -1  0 -1
  61 57 -1 -1 -1 -1 -1 -1  9 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0

The fifth matrix is of size 20x31 is 
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 50 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 44 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 39 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 -1 -1  0 -1 -1 -1 -1 -1
  61 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1  6 -1 55 -1 -1 -1 -1 -1 -1 23 -1 -1 -1 67 83 -1 -1 -1 -1  0 -1 -1 -1
  57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 46 -1 -1 -1 -1 17 -1 -1 -1 -1 -1  0 -1 -1
  -1 -1 -1 60 -1 -1 -1 11  6 -1 70 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 15 -1 -1 -1 -1 -1 -1  0 -1
  23 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 64 -1 -1 90 -1 -1 89  0

The sixth matrix is of size 24x35 is
  -1 82 -1 -1 -1 -1 94 34 -1 -1 66  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  40 -1 -1 -1 -1 -1 -1 78 39 49 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 74 -1 17 -1  7 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 52 -1 60 -1 -1 -1 -1 -1  0 44 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  7 -1 51 -1 -1 -1 -1 -1 30 -1 -1 -1 -1 47  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
   5 -1 -1 -1 -1 -1 -1 -1 70 -1 -1 -1 -1 52 62 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 27 22 -1  7 56 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1  6 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  6  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 29 -1 -1 -1 -1 -1 43 35 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 79 -1 -1 -1 -1 28 39 18 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 25 -1 -1 -1 23 -1 -1 -1 19  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 55 18 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 61  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  66 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 57 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 17 -1 -1 -1 71 -1 -1 -1 -1 -1 -1 -1 -1 -1 43 -1 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
  20 -1 -1 46 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 52 -1 -1 -1 -1 -1 63 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1 -1
  61 57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 94 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1 -1
  -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 55 -1 -1 -1 -1 -1 -1 23 -1 -1 -1 -1 83 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1 -1
  57 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 46 -1 -1 -1 -1 17 -1 -1 -1 -1 -1  0 -1 -1 -1 -1 -1 -1
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