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Introduction
In RAN1#87 and RAN1 ad-hoc, Polar codes were adopted as channel coding for uplink control information and downlink control information for eMBB system except for very small block length [1]. A detailed design of Polar codes is proposed in [2] for control channel in eMBB system. A single CRC for joint dectection and CRC-aided SCL decoding (CA-SCL) is propsed in the contribution. The additional CRC bits are designed for the baseline list size used in the SCL decoder. It can provide same false alarm rate with lower additional CRC overhead. The comparison between CA-SCL and Parity check SCL (PC-SCL) in [3] is discussed in [4].  
In this contribution, we will further compare the Polar codes between CA-SCL and PC-SCL for control channel for different CRC length of 16 bits and 8 bits based on the following evaluation agreement from RAN1 ad-hoc in Spokane [2]:
Agreement:
· To compare CRC-related aspects of polar code design,
· The same FAR performance (the same as LTE) should be considered for a fair comparison
· List size Lmax 8 is the baseline (evaluations of other values are not precluded)
· Performance metrics (may be based on analytic derivation)
· BLER
· FAR (with AWGN as input to the decoder)
· Polar codes for control channels support one of the following alternatives:
· Alt. 1: CRC + “basic polar” (i.e. as per above agreed description) codes
· 1a: Longer CRC
· e.g.	(J + J’) bits CRC + basic polar
· 1b: J bit CRC
· The J bits can be distributed
· The CRC can be used for both error detection and error correction
· Alt. 2: J bits CRC + concatenated polar codes 
· e.g.	 J bits CRC + J’ bits CRC + basic polar;
            J bits CRC + J’ bits distributed CRC + basic polar;
           	 J bits CRC + PC bits + basic polar; (i.e. PC-Polar)
           	 J bits CRC + Hash sequence + basic polar;
	…
· J bits CRC is only used for error detection

Two key takeaways from the agreement: 1) Lmax = 8 is assumed as the maximum list size for baseline polar code design comparison for a reasonable performance and complexity tradeoff. A reasonable list size needs be assumed for polar code design in order to avoid enormous complexity and power consumption. As shown in [6], large list size polar code decoding (e.g., L=32) will cost UE orders of magnitude increase in power consumption compared with TBCC decoding and it could be a few times more than LDPC decoding, which has severe impact on modem power efficiency. No matter how silicon scales in the future, energy efficiency in control channel power consumption is still the key. 2) different list size could be evaluated for comparison purpose, both for smaller and/or larger list size where either less decoding complexity is desirable or more complexity is available.
Simulation parameters for control channel
In this contribution, we will focus on the performance comparison among CA-SCL with fixed CRC bits and PC-Polar. PW construction and bit-reversal puncture are used for all the cases. For CA-SCL with fixed CRC bits, the length of CRC is fixed as J+3 = 19 or 11 bits. The CRC bits are fixed as 16 or 8 for PC-SCL. In addition, different list size performance is also evaluated. As a reference to CA-SCL w/ fixed 3-bit overhead, CA-SCL with variable additional CRC bits is also provided for comparison purpose only.
 The detailed simulation parameters for control channel are listed in Table 1. 
Table 1 Simulation parameters for control channel
	Channel
	AWGN

	Modulation
	QPSK

	Construction
	PW

	Coding Scheme
	 CA-SCL [2]
	CA-SCL[2] with fixed CRC
	PC-SCL[3]

	Concatenation
	CRC-Polar
	CRC-Polar
	PC-Polar

	Code rate
	1/6, 1/3, 1/2, 2/3

	Decoding algorithm
	CA-SCL with L=8 and other list sizes
	CA-SCL with L= 8                and other list sizes
	PC-SCL with L= 8  and other list sizes

	Info. block length
	{32, 48, 64 80, 120, 200} – J

	CRC bits 
	
	J + 3
	J


Note : J = 8 or 16 for error detection.
It should be noted that for CA-SCL, having fixed CRC overhead does not preclude the use of larger list size. For instance, when the list sizes of CA-SCL decoding is larger than 2^m, in the final path selection, the best 2^m paths in the list are selected according to the path metric for further CRC checking. In this way, the false alarm rate is still kept as the case of L=2^m. It is noted that there may be other adhoc UE implementation schemes to provide better performance with the same false alarm rate, which is beyond the scope of this contribution. Here, only the straightforward scheme of picking the best 2^m for CA-SCL decoding to ensure the same FAR is considered.
Performance comparison of CA-SCL with 19-bit CRC vs. PC-SCL w/ 16-bit CRC & L=8
The performance comparison between CA-SCL and PC-SCL is depicted in Figure 1. In CA-SCL, the CRC bits is set as 19 bits to normalize the false alarm rate with L=8. In PC-SCL, the CRC bits is set as 16 bits to provide the same level of false alarm rate in LTE. It is seen that the performance of CA-SCL with L=8 is better than PC-SCL with L=8, especially for small information block lengths. 
[image: ]
Figure 1. The performance comparison between CA-SCL and PC-SCL
Observation 1: The performance of CA-SCL outperforms PC-SCL with L=8
The block error rate (BLER) and false alarm rate (FAR) of 1/3 rate are depicted in Figure 2 for variable information sizes. Two scenarios are simulated, pure AWGN noise (where there is no grant) and random QPSK sequence (where the grant is not intended for this UE). Both cases have exactly the same FAR. Only the FAR results of pure AWGN noise are showed in the figure for simplification. 
It is can be seen that by increasing CRC bits by 3-bit from 16 bits to 19 bits, polar decoding list size L = 8=2^3 (e.g., CA-SCL with L=8) has the same FAR as decoding algorithm list = 1 with 16-bit CRC results, which is FAR = 2-16 = 1.5e-5. Note that the same phenomenon is also observed in the context of the general PDCCH decoding, where FAR is a function of number of candidate codewords (not just from list decoding, but could also from multiple hypotheses in blind decoding, where this relationship has been thoroughly validated in LTE).
[image: ]
Figure 2. BLER and FAR for 1/3 rate with variable information sizes
Observation 2: The FAR for Polar decoding with L=2m is kept unchanged when CRC bits are increased from 16 bits to 16+m bits to normalize the FAR.
To manage power efficiency and HW implementation complexity, we consider L = 8 for performance and complexity tradeoff and propose to increase CRC by 3 more bits to compensate for increased FAR due to list decoding. Larger list size is still possible and it is up to UE for large list size decoding and pruning algorithm implementation to achieve the same level of desired FAR. We will compare the performance of CA-SCl with fixed CRC in the following section.
Performance comparison of CA-SCL w/ 19-bit CRC and PC-SCL with 16-bit CRC, under different list sizes
In this section, we will compare CA-SCL with fixed CRC, and PC-SCL with variable list sizes (as a reference, CA-SCL w/ variable CRC is also simulated). For the case of CA-SCL reference curves, CRC with length of 16 + log2(L) are used for joint signal detection and CA-SCL decoding. 16-bit CRC is used only for signal detection in PC-SCL scheme. For the case of fixed CRC, there are 19-bit CRC for joint signal detection and CA-SCL decoding. As discussed before, CA-SCL with fixed CRC case, when the list sizes of CA-SCL decoding is larger than 2^m = 8, in the final path selection, the best 2^m paths in the list are selected according to the path metric for further CRC checking in order to keep the same FAR.
We will evalute two cases of CRC length of 16 bits and 8 bits which are used for signal detection only.


Comparison for 16-bit CRC 
The performance comparison among CA-SCL, PC-SCL and CA-SCL with fixed CRC are depicted in Figure 3 to Figure 8 for varaible information block size. In each figure, the requried SNR of 0.1% are used to compare the three schemes. It is seen that, in general, both CA-SCL  and CA-SCL with fixed CRC outperform PC-SCL, especially for the cases of small information block sizes, small list sizes and high coding rates.  Only a minority of cases of large information block sizes and large list sizes, the performance of PC-SCL is sightly better than CA-SCL with fixed CRC.
It can be easily seen that, though fixed CRC overhead CA-SCL is optimized for Lmax = 8 baseline, this does not preclude UE from achieving good performance with different list sizes. In fact, CA-SCL with CRC = 16 with list size  = 2, 4, 8, 16 outperforms PC-SCL of the same list size. Note that, the reason CA-SCL w/ fixed CRC overhead outperforms PC-SCL is that though PC-SCL does not have additional CRC overhead, PC frozen bits take away some reliable bits away from info bit set. Therefore, it sacrifices small list size performance significantly. In a sense, PC frozen bits are essentially adding overhead by taking reliable positions. We should also note that, CA-SCL w/ smaller list size decoding than baseline assumption L = 8, it also comes as a side benefit of even lower FAR, which is not possible for PC-SCL.
Observation 3: CA-SCL with fixed CRC outperform PC-SCL with 16-bit CRC, especially for the cases of small information block sizes, small list sizes and high coding rates.
We also provided similar results for CRC = 8-bit in the appendix and similar trend could be observed there.
Observation 4: CA-SCL with fixed CRC outperform PC-SCL with 8-bit CRC, especially for the cases of small information block sizes, small list sizes and high coding rates.
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Figure 3. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 4. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 5. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 6. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 7. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL

Complexity and latency comparison between CA-SCL and PC-SCL
[bookmark: _GoBack]The main implementation difference between CA-SCL and PC-SCL is the PC-frozen bits since the CRC bits is also applied for PC-SCL. Because the parity check bits must be encoded in transmitter and decoding in receiver, the complexity, latency and memory will be increased for PC-SCL. What is more, PC-SCL limits parallelization opportunities in the decoder because of the parity check bits as will be shown in this section. Therefore, CA-SCL has lower complexity and latency than PC-SCL. We analyze the encoding and decoding implementation complexity and latency in this section.
Encoding
Both PC-polar and CRC-polar can be viewed as concatenated coding schemes where the inner code is the polar code and outer code is either the PC code (+ a CRC for error detection only) or a long CRC for joint error correction and detection. The encoding of the polar code is parallelized: parallel circuits that perform the multiplication of information and frozen bits by the generator matrix G has been proposed in the literature. In this section, we investigate the impact of PC bits and CRC bits on encoding latency and complexity.
PC-Polar Encoding
The outer code in the PC-polar code scheme is calculated using cyclic feedback shift register as shown in [4]. When a parity bit location is encountered, its value is copied from the first register element. Therefore the value of a parity bit depends on previous information bits and since parity bits are not uniformly spaced in the polar encoder input, the number of additional information bits required to calculate the next parity bit varies. The direct, serial linear feedback register implementation lends itself well to these requirements. However, a parallel circuit implementation becomes complex due to the dependency and the variability in the number of additional information bits involved in the calculation of a parity value. Furthermore, the parallel circuits for CRC calculations cannot be used for the parity-bit calculations since the parity values comprise intermediate values from the shift register.
Since the parity bits are distributed in the PC-polar scheme, the polar encoder must cannot proceed until the parity bit value is calculated. Therefore, the polar encoder will be limited by the serial parity calculations and latency will be on the order of N cycles.
It should be noted that a CRC is still required in a PC-Polar scheme to reduce the false alarm rate.
CRC-Polar Encoding
Like the parity bits in PC-Polar, CRCs can also calculated using cyclic feedback shift registers. However, there are two major differences the lead to lower encoding latency for CRC-polar. The first is that CRC-polar uses the final CRC result and not intermediate values, enabling the use of high speed parallel CRC circuits that load w bits at a time [1]. The second difference is that the CRC is appended to the end of the information bits; therefore, the polar encoder will not need the value of the CRC to be known until all information bits have already been encoded. This enables the CRC to be calculated in parallel to the polar encoding process, stalling the latter for one cycle only if the last information bits does not fall on a w-bit boundary. The parallelism of the CRC calculation can be matched to that of the polar encoder and the encoding of the concatenated CRC-polar will have a latency on the order of N/w + c + 1 clock cycles, where c is the depth of the polar encoder pipeline.
Since a CRC is already needed to reduce false alarm rate, the latency overhead of increasing its length by a few, 2—5, bits to perform joint decoding and detection will be negligible.
Decoding
One of the most efficient methods to reduce decoding latency of polar codes, is the simplified successive cancellation list (SSC-list) decoding algorithm [8][9][10][11]. This algorithm increases parallelism and reduces the number of operations performed by applying low complexity decoding algorithms to certain constituent code structures that appear in the recursively constructed polar code. When constituent codes of rate 0 (all frozen), codes of rate 1 (all information), or repetition codes are encountered during the decoding process, the path metrics and the path list are updated directly based on the available decoder messages without the need for further recursion. By avoiding unnecessary recursion, a large number of calculations is avoided and the latency is significantly reduced.
The speed gains of SSC-list decoding increase when the number of constituent codes decreases and the size of the constituent codes with efficient decoding methods increases. For example, decoding a rate-1 code of length 16 is faster than decoding two constituent rate-1 codes of length 8. 
Parity bits (dynamic frozen bits) in PC-polar list decoder do not generate new paths and are used to update the path metrics, like frozen bits. However, unlike frozen bits, the values of parity bits are not known a priori. Therefore, parity bit cannot be treated as frozen or as information bits in the SSC-list decoder, but require specialized processing. For example, if a parity bit replaces an information bit in a rate-1 constituent code, then the resulting constituent code is replaced with two or more smaller constituent codes that require a longer time to decode compared to the original rate-1 code. Therefore, introducing parity bits reduces the benefits of SSC-list as they reduce the number of large rate-0 and rate-1 constituent codes and increase the number of smaller constituent codes, decreasing decoding efficiency. Since the parity bits are distributed throughout the code, they do not form large constituent codes of their own.
In a CRC-assisted polar list decoder on the other hand, the CRC bits are only used to select the final candidate from the list after the decoder is finished performing all calculations. Therefore they are treated as information bits and do not interfere with the constituent-code structure utilized by the SSC-list decoding algorithm.
To quantify the effect of using a PC-polar, instead of a CRC-assisted polar, code on the efficiency of the SSC-list decoding algorithm, Figure 8 shows the recursive structure of the PC-polar and CRC-assisted polar as binary trees. The root of the tree represents a code of length N = 128 and dimension K = 64, and is constructed from the concatenation of two constituent polar codes of length 64. This recursive process is repeated until constituent codes that can be directly decoded are reached. The length of a constituent code that is of distance  from the root is . The decoder traverses this tree depth-first starting with the left child of the root node. From Figure 8, it can be observed that the CRC- polar code has significantly fewer constituent codes than the PC-polar code. The minimum size of a directly decodable constituent code in the CRC-assisted polar code is two, reducing its tree depth to 7 levels compared to 8 levels for the PC-polar tree where there are length-1 constituent codes. This reduction in tree size is reflected in the decoder latency of each code: the CRC-assisted polar code requires 110 cycles to decode where the PC-polar code requires 192 cycles when the list size is 8. Therefore, using a PC-polar code in this case increased the decoding latency by 70% compared to a CRC-assisted polar code. 
[image: ] 
Figure 8-a. Decoding tree structure of SSC-list for CRC-assisted polar

[image: ]
Figure 8-b. Decoding tree structure of SSC-list for PC-polar
Overall, CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Observation 5: CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Conclusions
Observation 1: The performance of CA-SCL outperforms PC-SCL with L=8.
Observation 2: The FAR for Polar decoding with L=2m is kept unchanged when CRC bits are increased from 16 bits to 16+m bits to normalize the FAR.
Observation 3: CA-SCL with fixed CRC outperform PC-SCL with 16-bit CRC, especially for the cases of small information block sizes, small list sizes and high coding rates,
Observation 4: CA-SCL with fixed CRC outperform PC-SCL with 8-bit CRC, especially for the cases of small information block sizes, small list sizes and high coding rates.
Observation 5: CA-SCL outperforms PC-SCL in terms of lower encoding/decoding latency and complexity.
Proposal 1: Adopt CA-SCL (with one long CRC) solution of Polar codes for control channel for better performance, low complexity and latency.
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Appendix: Comparison for 8-bit CRC
The performance comparison among CA-SCL with fixed CRC, PC-SCL and CA-SCL with optimized CRC (as a reference) are depicted in Figure 9 to Figure 14 for varaible information block size. In each figure, the requried SNR of BLER = 0.1% are used to compare the three schemes. It is seen that, in majority cases, both CA-SCL  and CA-SCL with fixed CRC outperform PC-SCL, especially for the cases of small information block sizes, small list sizes and high coding rates.
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Figure 9. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 10. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 11. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 12. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 13. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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Figure 14. Performance comparison among CA-SCL, CA-SCL with fixed CRC and PC-SCL
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CA_Fixed, R=1/6

CA_Fixed, R=1/3

CA_Fixed, R=1/2

CA_Fixed, R=2/3

CA, R=1/6

CA, R=1/3

CA, R=1/2

CA, R=2/3
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K = 200 (Info. block size plus 8-bit CRC)

PC, R=1/6

PC, R=1/3

PC, R=1/2

PC, R=2/3

CA_Fixed, R=1/6

CA_Fixed, R=1/3

CA_Fixed, R=1/2

CA_Fixed, R=2/3

CA, R=1/6

CA, R=1/3

CA, R=1/2

CA, R=2/3


