Page 1
3GPP TSG-RAN WG1 #88 	R1-1702643
13th – 17th February 2017
Athens, Greece

[bookmark: Source]Agenda item:	8.1.4.1
Source: 	Qualcomm Incorporated
Title: 	Basegraph nesting and clustered liftings
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
The decoder implementation complexity of quasi-cyclic (QC) LDPC codes is related to the maximum code block size and the maximum lift size. In the previous RAN1 AdHoc meeting [1], the following parameters were indicated for downselection of the NR LDPC.
Agreement:
· The largest info block size supported by LDPC encoder Kmax and the largest shift size Zmax defined for a H matrix are selected from the following set of {Kmax, Zmax} pairs:
· {8192, 256}, {8192, 512}, {8192, 1024},
· {FFS near 8192, 320}, {FFS near 8192, 384}
· The exact {Kmax, Zmax} pair to be selected from the above 5 at RAN1#88

In this contribution, we discuss the importance of these parameters in the context of nested basegraphs with clustered liftings, based on the full LDPC design proposal first introduced in [2]. The notion of nested basegraphs here focuses on the selection of the systematic bits when deriving a basegraph from a family description, and it is understood that the graph can be further punctured or extended with diagonal to provide rate flexibility.
Moreover, we discuss the implications of the above agreement on multiple family LDPC codes, and re-iterate some of the analysis in [3] which shows how such designs can provide for both performance and substantial implementation benefits relative to single family solutions.
Maximum information block size
As first shown in the implementation complexity analysis of [4], one important parameter is maximum codeblock length as it directly translates to the LLR memory requirement of the decoder. For example, for a minimum code rate of 1/3 agreed from [1], the encoder with Kmax of 8k would at least include the following [4]:
· Double buffer channel LLRs for all codes up to N <= 24k
· Qc: the number of bits in a channel LLR
· Qi: the number of bits in an internal LLR

Note that this the parameter Kmax is relevant to the overall encoder design, since the memory storage only depends on the worst case. The direct relationship of Kmax to the basegraph description can vary depending on the LDPC code design, particularly in the case of multiple families where not every family need support Kmax.
Observation 1. Imposing a maximum information blocklength Kmax and minimum code rate at this Kmax imposes a maximum codeblock size requirement on the implementation, which in turn can bound the overall memory requirements of the decoder.
Maximum lift size
QC LDPC codes are constructed using a process known as lifting, in which the graphs of these LDPC codes are formed by interconnecting copies of a base graph or a protograph. Strictly speaking, imposing a maximum lift size Zmax imposes a maximum number of copies on the basegraph for the QC LDPC description, but does not directly translate to a hardware implementation cost.
For instance, the update logic in a min-sum or adjusted min-sum decoder could be implemented to allow for parallelization to the level of Zmax e.g., with the introduction of Zmax variable and check node processors with Zmax wide memory. Alternatively, at the cost of more clock cycles and higher latency, the hardware implementation could instead decompose Zmax such that only Zmax/2 variable and check node processors are needed each with Zmax/2 wide memory. A third yet different option is to further increase the level of parallelism by having C*Zmax variable and check node processors to essentially process C edges in the basegraph simultaneously. Clearly, the parallel nature of LDPC codes allows much flexibility in hardware implementation, and allowing one to readily tradeoff the memory logic costs with throughput and latency requirements, almost regardless of the different combinations of Zmax and basegraph size needed to satistify the overall requirements of the NR LDPC code.
Therefore, the focus of Zmax should be with regard to design of LDPC codes and their resulting performance including low error floors (e.g., see [5]). A large Zmax means that the support for all code rates at the largest blocklength must rely on subsequently many copies of the basegraph, which might be thought of as reducing the “randomness” as compared with a larger basegraph and smaller lifting.
Observation 2. Imposing a maximum lift size Zmax imposes a maximum number of copies on the basegraph. It does not directly translate to (or limit) the amount of parallelism which can be efficiently implemented in hardware.
Finally, when multiple LDPC families are introduced, further performance and implementation benefits can be enabled. In such cases, the larger lifts might be associated for some families even though the Kmax is served by a smaller lift size overall, as originally illustrated in [2]. This still allows for flexibility in the hardware design, while still providing benefits in hardware efficiency, which is discussed separately in [3]. Note that the above agreement from [1] does not explicitly state any direct relationship stated between Kmax or Zmax across single or multiple families and Zmax.
Proposal 1. The maximum lift size Zmax of an LDPC code family should be chosen to focus on good performance for the supported code rates associated with that family. Multiple families may or may not employ the same maximum lift size, depending on the design tradeoffs for enhanced performance and implementation.
LDPC code family
In this section we review the LDPC code family first introduced in [2]. We emphasize here how the particular nesting of optimized basegraphs the support of fine granularity in K, even when used with a clustered set of liftings. This clustered set of liftings can lead to improved hardware implementation as well as reduced description complexity.
[bookmark: _Ref474122053]Nested basegraphs
We define a family as a base graph which contains a collection of nested base graphs. Such a base graph consists of a high-rate core graph (i.e., highest rate supported before puncturing) and a low rate extension. The high-rate core includes two relatively high-degree punctured variable nodes that are base information nodes, and a set of degree three base information nodes that completes the set of information variable nodes. The parity structure is generally similar to the 802.11n encoding structure with the addition of one degree one-parity bit which is a parity of the two punctured variable nodes (see also Section 3.2). The remainder of the base graph beyond the core graph consists of low-rate extension bits which are formed by taking parities of the systematic and parity-bits of the core graph. These can be used to generate re-transmissions that support rate-compatible IR HARQ. The entire structure has been optimized (offline) for connections to provide good performance at low complexity across all of the nested subgraphs. Figure 1 depicts nested base graph family. Various details such as number of systematic information bit-columns and parities are different for the different families and are explained below.

Systematic bit-columns
11n-like Parity structure
Low rate extensions
State/punctured nodes
High-rate core graph
Degree one parity-bit

Figure 1: Family of nested base graphs

For each family, we define quantities and as the minimum and the maximum number of base information bit-columns in the nested set of base graphs and and as the minimum and maximum number of parity bit-columns. The number of punctured base information bit-columns is denoted by and is set to two.
Multiple base graphs are nested within each other starting at the smallest basegraph over base information columns and ending with the largest basegraph with base information columns. For different operating rates supported by the family, different starting base graphs can be selected from the nested collection and used for encoding and decoding. More precisely, the base graph is described using the maximum number and the base graphs with smaller base information bits, say kb, are obtained by deleting the last base information bits.
(This procedure can be interpreted as shortening at the base graph level, however to avoid confusion we prefer to view this as an extraction of systematic bits from the nested basegraph family. This representation can also be exploited to simplify the implementation at the decoder, since it works only on the extracted basegraph within the family.)
The maximum rate supported by all of the nested base graphs associated to the family is given by and the minimum rate supported by the all of the nested base graphs is given by. Note that while the range from to is supported by all the blocklengths there are additional rates supported at particular information blocklengths. For example, there is a rate code, but this rate cannot be supported at all the above stated information blocklengths. For simplicity of exposition we restrict the use of a family to rates in between and blocklengths in between . It will be seen later that each family has sufficient range and granularity in rate required for NR.
Set of clustered liftings
The base graphs derived from a given family are then lifted to achieve a binary parity check matrix. Rather than supporting a continuum of liftings, each family also consists of a set of clustered liftings, which are defined as follows. Consider the set of numbers and the set of lifts given by for . For each the set of lifts is referred to as the cluster of lifts. The full set of lifts is given by the set {4, 5, 6, 7, 8, 10, 12, 14, 16, 20, 24, 28, 32, 40, 48, 56, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896}. The lifting values used to cyclically lift the base graph are common for each element of a cluster.
The importance of having liftings design in this manner are two-fold. First, by maximizing the use of in the lift description, implementation complexity for supporting all permutations at this lift size can be simplified. The additional factor of also lends itself to an efficient implementation but can provide added flexibility e.g., in the granularity of the liftings. Second, by allowing such an exponentially growing set of lifts, the blocklength range can be covered adequately with a limited number.
Proposal 2: The clustered set of lifts of the form for should be supported by the NR LDPC in order to improve implementation complexity and reduce description complexity.
Procedure to obtain code from family
Consider finding a code with parameters K,N in a given family. If K is in the specified range and K/N is in the specified range then a solution is guaranteed. There may be more than one solution. We first determine a lifting size and the base graph parameters. The lifted code may require some additional shortening and puncturing, but this is limited, usually to less than one lifted column, except in the case of the highest rate codes.
The following algorithm can be used to determine a suitable base graph and lifting value.
1. Find so that
2. Set the number of base graph information variable nodes to by deleting the last base information variable nodes from the base graph of the family
3. Append the first parity variable nodes unless in which case the parity variable nodes are appended. (The number of base check nodes is equal to the number of base parity variable nodes.)

Algorithm 1

The base graph and the lift values have been designed so that a solution to 1 is always possible for K in the supported range. In some cases there may be more than one solution. If K/N is within the supported rate range then it is guaranteed that is in the range . When the lifted code will be shortened by padding the K information bits with an additional h zeros.
The definition of ensures that and that if then K=. This implies that to obtain the desired information blocklength, , we need to shorten less than one column or worth of information bits in the lifted graph and that the number of information bits is a least .
This is illustrated in Figure 2 and Figure 3 for the given parameter set below.
	
	
	
	
	
	
	
	
	
	

	30
	24
	2
	7
	158
	5
	24/27
	30/186
	96
	8192

[image:]
[bookmark: _Ref474125399]Figure 2. Basegraph kb versus K for fixed versus nested designs

[image:]
[bookmark: _Ref474125403]Figure 3. Number of shortened bits for fixed versus nested designs
In general the final bit-level shortening should be done on the last information column. In the same vein, the amount of puncturing of parity bits required to obtain the desired code blocklength , is at most one column, except in the case of the highest family when a rate higher than the core rate is desired, in which case up to two of the degree two parity bit columns may be punctured. More details can be found in [2], and the resulting robust performance is demonstrated in [5].
Observation 3: The LDPC family design of [2] nests multiple optimized basegraphs ranging from to within the overall family basegraph description. From this structure, any value of in the range of .and .can be supported by selecting one of the nested basegraphs with one of the lifts Z from the clustered set of lifts, and any further shortening at the bit-level will of length less than Z lifted bits (i.e., less than 1 column of the basegraph).
Observation 4: For nested basegraphs [2], the value of and of are not directly related through Zmax but depend instead on the value of for the basegraph used to operate at .
Proposal 3: The nested basegraph approach of [2] should be coupled with the clustered set of lifts to provide fine granularity and robust performance.
Multiple LDPC families
Families and lifts
The design and benefits of using multiple LDPC families were first discussed in [2]. Here we review these parameters for completeness. That is, three families are denoted as the highest, middle and the lowest family, which indicates the relative code rate of the core portion of the graph.
	Family
	
	
	
	
	
	
	
	
	
	(see note)

	High
	30
	24
	2
	7
	158
	5
	24/27
	30/186
	96
	8192

	Middle
	20
	16
	2
	9
	106
	10
	16/24
	20/124
	128
	8192

	Low
	10
	8
	2
	11
	114
	14
	8/20
	10/122
	64
	8192

Note that the value of depends on the lift supported for each family. As seen in the previous section, for the high rate family the requires a lift of 320, and the resulting basegraph size (from the nested description) has =26. Since the sizes of the basegraphs are smaller for the lower and middle families, the resulting lifts at any can be larger those of the high family. More discussion on the design of multiple families from an implementation standpoint is given in [3].
Observation 5: The maximum lift in a multiple family LDPC code may be similar (or different) depending on design targets. The description can have implications toward improving efficiency and/or performance.
 Encoding structure
Recall that all the three families have 802.11n-like encoding structure. For the highest and middle family, the encoding structure is exactly the same as 802.11n consisting of an accumulate chain of degree two and terminated with a degree three node. In 802.11n the permutations on the three edges connected to the degree three variable nodes is 1, 0, 1. I.e., the first edge has a cyclic shift of 1, the second edge has 0 and the third edge has a shift of 1. It has been observed that the 802.11n encoding structure can be limiting the performance for low rate codes. The failure is caused by small loops created by in the encoding structure of 802.11n which limits the performance of the rest of the code. In order to circumvent this problem, the encoding structure of the lowest family is designed to be slightly differently. The basic structure remains the same, however the cyclic shifts on the edges of the degree three variable node are not 1,0,1 as is done usually but some other numbers. This improves the performance of the lowest family codes. The change in the cyclic shift value does not materially increase the complexity of the encoding and all the underlying encoding machinery can be easily leveraged. All this is explained in more detail next.
Typically, the permutations used are from the cyclic group of integers modulo the lift value. As a result, quasi cyclic LDPC codes can be thought of as codes over the ring of binary polynomials modulo . In this interpretation, a binary polynomial, may be associated to each variable node in the base graph. The binary vector corresponds to the bits associated to corresponding variable nodes in the lifted graph. A cyclic permutation by of the binary vector is achieved by multiplying the corresponding binary polynomial by where multiplication is taken modulo . A degree parity check in the base graph can be interpreted as a linear constraint on the neighboring binary polynomials written as where the values, are the cyclic lifting values associated to the corresponding edges. The parity check matrix H(x) in this representation resembles the base parity check matrix but entries associated to edges are monomials with the exponent representing the associated cyclic shift.
In this interpretation of the lifted quasi-cyclic codes the encoding problem typically reduces to solving a linear system

over the ring of polynomials modulo where is an invertible square submatrix of the parity-check matrix . is the part of the codeword corresponding to the parity-bits and is the syndrome obtained using the systematic bits. E.g., in 802.11n there is an accumulate chain of degree two parity-bits terminated using a degree three parity-bit. This is represented by the polynomial matrix shown below for an example with six base parity checks.

Encoding, ie., solving the above linear system, can be done as follows. First, multiply on the left with the vector and note that [1 0 0 0 0 0] to obtain . This then determines and we can easily solve for the rest of C(x) using back substitution. The calculation of the syndrome D(x) is the performing of the multiplication N(x)I(x)= D(x) where N(x) is the submatrix of H(x) complementary to M(x) and I(x) is the vector of information polynomials. Thus, the encoding operations in 802.11n typically involve permutations and XOR of bit-vectors. It can be shown that similar operations are required for the new encoding structure and hence the complexity of encoding the new encoding structure is essentially the same as 802.11n encoding. The largest part of the encoding operation is the computation of D(x). For the cluster in the set of clustered lifts, for , the encoding structure for the lowest family is represented by the following matrix,

Where for the cluster. The encoding is now done in a similar fashion as 802.11n mentioned above. Indeed, if we left-multiply the matrix by the vector [1 1 1 1 1 1] we get the vector [] where the polynomial . Thus, the syndrome equation given above now becomes . It is not hard to verify that for every cluster , the polynomial is a monomial such as or . Furthermore, we can write . Thus the inverse of the polynomial is given by , when the monomial is ,hence the inversion of Q(x) can be done with a a few cyclic permutations and the bitwise XOR operation. Note that multiplying with a monomial is equivalent to a cyclic shift (cyclic permutation) by and adding monomials corresponds to the bitwise XOR operation. In particular multiplication by Q(x) or Q(x2) amounts to taking three cyclic shifts of a binary vector and XORing the shifted vectors together bitwise.
For the first cluster of {8,10,12,14} we use the encoding matrix

which is equivalent to the 802.11 encoding structure.

Proposal 4: Encoding with the new structure should use fixed number of cyclic shifts and XOR operation similar to the 802.11n. However, use different permutations or cyclic shift values for the degree three parity node for better error-floor performance.
Conclusions
Observation 1. Imposing a maximum information blocklength Kmax and minimum code rate at this Kmax imposes a maximum codeblock size requirement on the implementation, which in turn can bound the overall memory requirements of the decoder.
Observation 2. Imposing a maximum lift size Zmax imposes a maximum number of copies on the basegraph. It does not directly translate to (or limit) the amount of parallelism which can be efficiently implemented in hardware.
Proposal 1. The maximum lift size Zmax of an LDPC code family should be chosen to focus on good performance for the supported code rates associated with that family. Multiple families may or may not employ the same maximum lift size, depending on the design tradeoffs for enhanced performance and implementation.
Observation 3: The LDPC family design of [2] nests multiple optimized basegraphs ranging from to within the overall family basegraph description. From this structure, any value of in the range of .and .can be supported by selecting one of the nested basegraphs with one of the lifts Z from the clustered set of lifts, and any further shortening at the bit-level will of length less than Z lifted bits (i.e., less than 1 column of the basegraph).
Observation 4: For nested basegraphs [2], the value of and of are not directly related through Zmax but depend instead on the value of for the basegraph used to operate at .
 Proposal 3: The nested basegraph approach of [2] should be coupled with the clustered set of lifts to provide fine granularity and robust performance.
Observation 5: The maximum lift in a multiple family LDPC code may be similar (or different) depending on design targets. The description can have implications toward improving efficiency and/or performance.
[bookmark: _GoBack]Proposal 4: Encoding with the new structure should use fixed number of cyclic shifts and XOR operation similar to the 802.11n. However, use different permutations or cyclic shift values for the degree three parity node for better error-floor performance.
References
[1] [bookmark: _Ref474112695]Chairman’s Notes, RAN1 NR AdHoc, January 2017, Spokane USA.
[2] [bookmark: _Ref474111925]R1-166388, “LDPC rate compatible design”, RAN1 #86, Gothenburg, Sweden.
[3] [bookmark: _Ref474111745]R1-1702642, “Design of multiple family LDPC codes”, Qualcomm Incorporated, RAN1 #88, Athens, Greece.
[4] [bookmark: _Ref474112498]R1-166372, “Performance and implementation comparison for EMBB channel coding”, RAN1 #86, Gothenburg, Sweden.
[5] [bookmark: _Ref474115201]R1-1702644, “Performance evaluation of LDPC codes”, Qualcomm Incorporated, RAN1 #88, Athens, Greece.

8/8
image1.png

image2.png

