[bookmark: _GoBack]3GPP TSG RAN WG1 Meeting #88	R1-1701707
Athens, Greece, 13th - 17th February 2017

Agenda Item:	8.1.4.1
Source:	Huawei, HiSilicon
Title:	Implementation aspects of LDPC codes
Document for:	Discussion and Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In the RAN1 AH meeting [8], it was concluded the following:
Conclusion:
· At least the following criteria are considered for LDPC design comparison in addition to BLER performance
· Implementation complexity
· Latency
· discuss details in the email discussion.
· Companies are encouraged to provide at least the following for the base matrix for the considered code rates:
· Zmax
· Total number of edges
· Maximum row weight
· Maximum column weight
FFS if/how to define and compare numbers of (quasi) layers
In this contribution we consider the nested LDPC codes in [6] and illustrate latency and hardware complexity trade-off using one and multiple cores for decoding.

Latency and complexity
Ideal and practical analysis
In this section we compare different solutions in terms of latency and implementation complexity. LDPC decoder architectures can be row-parallel or block-parallel ones. As shown in [5], the row parallel architecture for a large parity check matrix (PCM) is not practical because of the complex routing network needed for parallel processing of several PCM rows. In the analysis below we consider the block-parallel decoder architecture with layered schedule similar to the architecture analysed in [1][2][5]. This architecture is suitable for both the Layered Offset Min-Sum and the Adjusted Min-Sum decoding algorithms. Block parallel architecture is obtained by partitioning the processing of a layer into multiple cycles. A layer may consist of one circulant row or, if a matrix has quasi row orthogonal (QRO) structure, a layer may include several non-overlapping groups of rows. For a block paralleled decoder, the following equations can be used to calculate the latency and the throughput:
 (1)
 (2)
where
· denotes the number of decoding iterations ();
· denotes the number of clock cycles required to do one decoding iteration;
· denotes the number of information bits ();
· denotes the operating frequency (GHz).

The parameter can be different for different implementations of the block-parallel decoder. In an ideal situation when all the computation resources are utilized 100% it can be calculated as follows:
 (3)
(see formula (2) from [5]), where
· denotes the parallelism level which may be smaller or bigger than the PCM circulant size ;
· denotes the codeword length (including the punctured nodes);
· denotes the average variable node degree (including the punctured and weight 1 nodes).

In practical decoder implementations for irregular LDPC codes it is not usually possible to achieve this ideal number of clock cycles per one iteration . Thus it makes sense to estimate the real value of .
If the parallelism level is greater than the circulant size , (for example, where is some positive integer), the decoder may process several circulants in parallel. We suppose that this is done in the decoder by several () different check-node update (CNU) units, called cores (for example, is used in [2]), and each such core can process one circulant block in the PCM per one clock cycle. Usually a pipeline scheme is utilized and the results of the circulant block processing (the sum of the corresponding channel LLR and the check-to-variable messages) are updated with clock cycles delay (for example,). We call such decoding architecture a C-core block parallel decoder with pipeline delay.
Another way for increasing the parallelism level is using several decoders running in parallel, but this proportionally increases the memory size.
Increasing the number of cores C monotonically increases the throughput and proportionally decreases the latency. Thus the larger the maximal circulant size of the matrix is, the smaller is the number of cores needed to achieve the required throughput. At the same time, the smaller the number of cores is, usually the better the core utilization (percentage of time when the core is not in the pause state) can be achieved.
[image:]
[bookmark: _Ref470822039]Figure 1. Example of a conflict
For a multi-core decoder, the circulant rows of the PCM are processed by a certain order during the decoding iteration, and several cores process different circulant rows simultaneously to increase the throughput. In such multi-core case () when the input data (the sum of channel LLR and the check-to-variable messages) for one core (core A) is not ready because another core (core B) has not yet finished on the previous circulant row, a conflict (see Figure 1) occurs.
A conflict can be resolved in two different ways.
First workaround: core A can wait (up to clock cycles) until core B finishes its work and the corresponding input data for core A is ready. In this case if some layer contains multiple conflicts with the previous layer, the same clock cycles are needed to be waited regardless of the number of cores. Thus, total number of clock cycles spent to resolve all conflicts is up to where denotes the number of layers that have at least one conflict with the previous layer (hereinafter we call them conflict layers).
Second workaround: core A can use the information from the previous iteration as its input.
If using the first workaround, the throughput of the decoder will decrease, while in the second case the error correction performance will be worse.
If conflicts are resolved in the second way, formulas (3) and (1) with can still be used to estimate the latency.
Here we use the first workaround. For a -core () block parallel decoder and a PCM with conflicts, the following equation (4) as explained in [9] can be used to calculate a pessimistic (upper) estimate of the number of clock cycles per one iteration:
, (4)
where denotes the total number of conflict layers in the PCM.
It can be shown that by changing the order of processing circulants within a row some conflicts may be resolved. Nevertheless, some number of conflicts cannot be resolved by optimizing the decoding schedule.
The following formula (5) gives an optimistic (lower) estimate for the number of decoding clock cycles per iteration:
 (5)
where
· denotes the number of non-empty circulants in the -th row;
· denotes the total number of non-empty circulants in the PCM, ;
· denotes the number of conflicts in the -th row of the PCM with the previous row in the processing order (the first row we compare with the last processed row from the previous iteration).
Formula (5) can be explained as follows. First of all we suppose here that each layer consists only of one row. If a PCM has non-zero circulants then for one decoding iteration the sum of the numbers of clock cycles required for all cores should be at least . If there are some conflicts in the -th row with the previously processed row, then for all cores there will be in total at least stalls (lost clock cycles) when processing this row (if this value is positive). This is true because before we can start to process circulants that have conflicts with the previous row we have to wait clock cycles after we finish the previous row processing due to the pipeline delay. Hence, cores could process circulants during this time, but due to the conflicts they can process only out of these circulants that do not need information from the previous row. As a result, there will be at least stalls for one decoding iteration for all cores.
It can be shown via simulations that the performance degradation is negligible if all the conflicts occur only in the HW columns of the PCM. We indicate such a matrix as non-conflict code (NC). It is easily seen that in a matrix with NC-QRO structure all conflicts inside one layer can only occur in HW circulant columns. An example of NC-QRO matrix is shown in Figure 2 in [6]. A more comprehensive example of such NC matrix with QRO property can be found in the Excel spreadsheet in [6].
In the tables below we provide latency estimates for the NC-QRO matrix [6], the matrix A (proposed in R1-166388) and the matrix B (proposed in R1-167889). For the ideal latency estimate we use formula (3) and thus do not take into account the conflicts and assume that each circulant block is processed one clock by one core (in pipeline). For the pessimistic estimate of the real latency we use formulas (1) and (4) and thus take into account all the conflicts that occur outside the HW circulant columns. For optimistic estimate of the real latency we use formulas (1) and (5) and thus take into account only irresolvable conflicts.

Table 1. Latency estimations (clock cycles for 15 iterations), NC-QRO code,
	Rate
	NC-QRO code (66x82,Zmax=512),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	# cores
	1
	2
	3
	4
	1
	2
	3
	4
	1
	2
	3
	4

	8/9
	855
	435
	285
	225
	945
	525
	375
	315
	870
	480
	360
	285

	5/6
	1080
	540
	360
	270
	1215
	675
	495
	405
	1110
	630
	465
	390

	3/4
	1305
	660
	435
	330
	1440
	795
	570
	465
	1320
	735
	540
	435

	2/3
	1515
	765
	510
	390
	1650
	900
	645
	525
	1545
	840
	615
	495

	1/2
	2220
	1110
	750
	555
	2355
	1245
	885
	690
	2250
	1200
	840
	675

	2/5
	2790
	1395
	930
	705
	2925
	1530
	1065
	840
	2805
	1470
	1035
	810

	1/3
	3300
	1650
	1110
	825
	3435
	1785
	1245
	960
	3330
	1740
	1200
	945

	1/5
	5250
	2625
	1755
	1320
	5385
	2760
	1890
	1455
	5280
	2715
	1860
	1425

	Rate
	NC-QRO code (66x82,Zmax=512),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	# cores
	1
	2
	3
	4
	1
	2
	3
	4
	1
	2
	3
	4

	8/9
	855
	435
	285
	225
	975
	555
	405
	345
	900
	510
	390
	315

	5/6
	1080
	540
	360
	270
	1260
	720
	540
	450
	1155
	675
	510
	435

	3/4
	1305
	660
	435
	330
	1485
	840
	615
	510
	1365
	780
	585
	480

	2/3
	1515
	765
	510
	390
	1695
	945
	690
	570
	1590
	885
	660
	540

	1/2
	2220
	1110
	750
	555
	2400
	1290
	930
	735
	2295
	1245
	885
	720

	2/5
	2790
	1395
	930
	705
	2970
	1575
	1110
	885
	2850
	1515
	1080
	855

	1/3
	3300
	1650
	1110
	825
	3480
	1830
	1290
	1005
	3375
	1785
	1245
	990

	1/5
	5250
	2625
	1755
	1320
	5430
	2805
	1935
	1500
	5325
	2760
	1905
	1470

Table 2. Latency estimations (clock cycles for 15 iterations) for code A,
	Rate
	Code A (158x188,Zmax=320),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1650
	825
	555
	420
	330
	285
	240
	210
	1875
	1050
	780
	645
	555
	510
	465
	435
	1650
	825
	555
	435
	390
	360
	345
	330

	5/6
	1785
	900
	600
	450
	360
	300
	255
	225
	2100
	1215
	915
	765
	675
	615
	570
	540
	1800
	930
	660
	525
	480
	450
	435
	420

	3/4
	2340
	1170
	780
	585
	480
	390
	345
	300
	2790
	1620
	1230
	1035
	930
	840
	795
	750
	2355
	1215
	870
	720
	660
	630
	600
	585

	2/3
	2895
	1455
	975
	735
	585
	495
	420
	375
	3435
	1995
	1515
	1275
	1125
	1035
	960
	915
	2910
	1500
	1080
	900
	825
	780
	750
	720

	1/2
	4290
	2145
	1440
	1080
	870
	720
	615
	540
	5100
	2955
	2250
	1890
	1680
	1530
	1425
	1350
	4305
	2220
	1650
	1395
	1275
	1200
	1140
	1095

	2/5
	5475
	2745
	1830
	1380
	1095
	915
	795
	690
	6420
	3690
	2775
	2325
	2040
	1860
	1740
	1635
	5490
	2835
	2100
	1770
	1605
	1485
	1410
	1350

	1/3
	6540
	3270
	2190
	1635
	1320
	1095
	945
	825
	7485
	4215
	3135
	2580
	2265
	2040
	1890
	1770
	6570
	3375
	2460
	2040
	1815
	1665
	1575
	1485

	1/5
	9795
	4905
	3270
	2460
	1965
	1635
	1410
	1230
	10740
	5850
	4215
	3405
	2910
	2580
	2355
	2175
	9810
	4995
	3540
	2850
	2460
	2205
	2025
	1890

	Rate
	Code A (158x188,Zmax=320),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1650
	825
	555
	420
	330
	285
	240
	210
	1950
	1125
	855
	720
	630
	585
	540
	510
	1650
	825
	570
	495
	465
	435
	420
	405

	5/6
	1785
	900
	600
	450
	360
	300
	255
	225
	2205
	1320
	1020
	870
	780
	720
	675
	645
	1815
	960
	705
	630
	585
	555
	540
	525

	3/4
	2340
	1170
	780
	585
	480
	390
	345
	300
	2940
	1770
	1380
	1185
	1080
	990
	945
	900
	2370
	1260
	960
	855
	810
	780
	750
	735

	2/3
	2895
	1455
	975
	735
	585
	495
	420
	375
	3615
	2175
	1695
	1455
	1305
	1215
	1140
	1095
	2940
	1560
	1200
	1065
	1005
	960
	930
	900

	1/2
	4290
	2145
	1440
	1080
	870
	720
	615
	540
	5370
	3225
	2520
	2160
	1950
	1800
	1695
	1620
	4320
	2370
	1860
	1650
	1545
	1470
	1410
	1365

	2/5
	5475
	2745
	1830
	1380
	1095
	915
	795
	690
	6735
	4005
	3090
	2640
	2355
	2175
	2055
	1950
	5520
	3030
	2355
	2070
	1920
	1800
	1725
	1665

	1/3
	6540
	3270
	2190
	1635
	1320
	1095
	945
	825
	7800
	4530
	3450
	2895
	2580
	2355
	2205
	2085
	6600
	3570
	2715
	2340
	2130
	1980
	1890
	1800

	1/5
	9795
	4905
	3270
	2460
	1965
	1635
	1410
	1230
	11055
	6165
	4530
	3720
	3225
	2895
	2670
	2490
	9840
	5190
	3795
	3150
	2775
	2520
	2340
	2205

Table 3. Latency estimations (clock cycles for 15 iterations) for code B,
	Rate
	Code B (66x82,Zmax=256),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1695
	855
	570
	435
	345
	285
	255
	225
	1965
	1125
	840
	705
	615
	555
	525
	495
	1695
	855
	570
	435
	405
	375
	360
	360

	5/6
	2025
	1020
	675
	510
	405
	345
	300
	255
	2340
	1335
	990
	825
	720
	660
	615
	570
	2025
	1020
	705
	540
	495
	465
	435
	420

	3/4
	2445
	1230
	825
	615
	495
	420
	360
	315
	2805
	1590
	1185
	975
	855
	780
	720
	675
	2460
	1260
	870
	690
	615
	570
	540
	525

	2/3
	2955
	1485
	990
	750
	600
	495
	435
	375
	3360
	1890
	1395
	1155
	1005
	900
	840
	780
	2955
	1500
	1050
	825
	735
	675
	645
	615

	1/2
	4260
	2130
	1425
	1065
	855
	720
	615
	540
	4710
	2580
	1875
	1515
	1305
	1170
	1065
	990
	4260
	2160
	1500
	1185
	1020
	930
	870
	810

	2/5
	5460
	2730
	1830
	1365
	1095
	915
	780
	690
	5955
	3225
	2325
	1860
	1590
	1410
	1275
	1185
	5460
	2775
	1935
	1515
	1305
	1170
	1065
	1005

	1/3
	6600
	3300
	2205
	1650
	1320
	1110
	945
	825
	7095
	3795
	2700
	2145
	1815
	1605
	1440
	1320
	6600
	3345
	2310
	1800
	1530
	1350
	1230
	1140

	Rate
	Code B (66x82,Zmax=256),

	
	Ideal latency estimate, clocks
	Upper latency estimate, clocks
	Lower latency estimate, clocks

	#cores
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8
	1
	2
	3
	4
	5
	6
	7
	8

	8/9
	1695
	855
	570
	435
	345
	285
	255
	225
	2055
	1215
	930
	795
	705
	645
	615
	585
	1695
	855
	585
	525
	495
	465
	450
	450

	5/6
	2025
	1020
	675
	510
	405
	345
	300
	255
	2445
	1440
	1095
	930
	825
	765
	720
	675
	2025
	1035
	720
	630
	600
	570
	540
	525

	3/4
	2445
	1230
	825
	615
	495
	420
	360
	315
	2925
	1710
	1305
	1095
	975
	900
	840
	795
	2475
	1290
	915
	795
	735
	690
	660
	645

	2/3
	2955
	1485
	990
	750
	600
	495
	435
	375
	3495
	2025
	1530
	1290
	1140
	1035
	975
	915
	2970
	1545
	1110
	945
	870
	810
	780
	750

	1/2
	4260
	2130
	1425
	1065
	855
	720
	615
	540
	4860
	2730
	2025
	1665
	1455
	1320
	1215
	1140
	4275
	2220
	1575
	1320
	1170
	1080
	1020
	960

	2/5
	5460
	2730
	1830
	1365
	1095
	915
	780
	690
	6120
	3390
	2490
	2025
	1755
	1575
	1440
	1350
	5475
	2850
	2010
	1665
	1470
	1335
	1230
	1170

	1/3
	6600
	3300
	2205
	1650
	1320
	1110
	945
	825
	7260
	3960
	2865
	2310
	1980
	1770
	1605
	1485
	6615
	3420
	2400
	1950
	1695
	1515
	1395
	1305

According to formula (2), to reach a throughput of 20 Gbps for the given PCM at clock frequency 1 GHz with 15 decoding iterations, a decoder must have a latency not greater than clock cycles.
From the tables above, we can find that optimistic (lower) estimate of the real latency for NC-QRO code is much less than the one for the other two codes, taking into account larger parallelism and fewer conflicts. If , the NC-QRO code can have a latency not bigger than 409 clock cycles using 3 cores, while code A can reach this target only using 8 cores and code B cannot meet the requirement of such decoding latency even using more cores. To be mentioned, the performance is not impacted by the limitation of NC-QRO structure, as observed in [7].
Observation 1: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Complexity of shift network
To estimate the complexity we used an approach similar to the one used in [2]. The memory structure is the following:
· The memory for LLRs: bits. This memory is initialized with the channel LLRs and then is used to store the sum of the channel LLRs with the current check-to-variable messages and is updated during the decoding. We suppose that 6 bits are used for the absolute value plus one additional bit is used for the sign.
· The check-to-variable messages memory: bits. The check-to-variable messages are stored in the compressed form (4 bits for min1 and min2; 5 bits for the index; 1 bit for sign)
· The memory for signs: , where is the number of non-zero circulant blocks in the PCM.
To support a fine granularity in the length adaptation of the LDPC code the decoder should use a shift network that can circularly shift values for different circulant sizes. QC-LDPC Shift Network (QSN) [3][4] can be used for this. Another approach is to restrict the possible circulant sizes to some small set of values and use a specialized shift network (e.g., Banyan network) that can support only those circulant sizes. However as it was estimated in [1][2] the area of the QSN is less than 7% of the total decoder area for the maximal circulant size Z=320, hence it does not affect the total area substantially. Moreover, a large restriction on the possible circulant sizes usually causes performance degradation for some particular information length and rates due to large shortening and puncturing.
Observation 2: QSN can be applied for block-parallel implementation to support flexible lifting value.
Latency vs. Complexity
The number of 2:1 7-bit MUXs required to implement one QSN can be estimated [4] by
 (6)
where .
We suppose that the complexity of one check-node update (CNU) unit is 7-bit. Here we also suppose that the complexity of the -bit adder and the -bit comparator is approximately the same. One core contains one CNU unit and one QSN. If we suppose that the gate count of one -bit MUX and one -bit adder is , the gate count of one core is given by
 (7)
Tables 4, 5 and 6 show the complexity estimation for NC-QRO matrix and codes A and B.
Table 4. Complexity for NC-QRO code for Rmin=1/5 and 1/3
	
	NC-QRO code (Rmin=1/5, Zmax=512)

	
	Number of cores (C)

	
	1
	2
	3
	4

	Memory (millions)
	0.927
	0.927
	0.927
	0.927

	MUXes (millions)
	0.061
	0.122
	0.183
	0.244

	ADDERs (millions)
	0.036
	0.072
	0.108
	0.143

	Total gates (millions)
	1.218
	1.508
	1.798
	2.089

	
	NC-QRO code
(punctured to Rmin=1/3, Zmax=512)

	
	Number of cores (C)

	
	1
	2
	3
	4

	Memory (million)
	0.516
	0.516
	0.516
	0.516

	MUXes (million)
	0.061
	0.122
	0.183
	0.244

	ADDERs (million)
	0.036
	0.072
	0.108
	0.143

	Total gates (millions)
	0.806
	1.097
	1.387
	1.677

Table 5. Complexity for code A
	
	Code A (Rmin=1/5, Zmax=320)

	
	Number of cores (C)

	
	1
	2
	3
	4
	5
	6
	7
	8

	Memory (million)
	0.954
	0.954
	0.954
	0.954
	0.954
	0.954
	0.954
	0.954

	MUXes (million)
	0.035
	0.071
	0.106
	0.142
	0.177
	0.212
	0.248
	0.283

	ADDERs (million)
	0.022
	0.045
	0.067
	0.090
	0.112
	0.134
	0.157
	0.179

	Total gates (million)
	1.128
	1.301
	1.475
	1.648
	1.822
	1.995
	2.168
	2.342

Table 6. Complexity for code B
	
	Code B (Rmin=1/3, Zmax=256)

	
	Number of cores (C)

	
	1
	2
	3
	4
	5
	6
	7
	8

	Memory (million)
	0.514
	0.514
	0.514
	0.514
	0.514
	0.514
	0.514
	0.514

	MUXes (million)
	0.027
	0.054
	0.081
	0.108
	0.134
	0.161
	0.188
	0.215

	ADDERs (million)
	0.018
	0.036
	0.054
	0.072
	0.090
	0.108
	0.125
	0.143

	Total gates (million)
	0.648
	0.783
	0.917
	1.052
	1.186
	1.321
	1.455
	1.590

Figure 2 shows a trade-off between lower latency estimate (measured in clock cycles, the greater the worse) and hardware complexity estimate (measured in gates, the greater the worse) for the NC-QRO code and code A, for different decoding rates and . For each code rate R, a normalized throughput threshold equal to 20 Gbps * R / Rmax is shown on the plot.
[image:]
[bookmark: _Ref470822146][image:]
[image:]
[image:]
[image:]
[image:]
[image:]
Figure 2. Latency vs. Hardware Complexity Trade-off (NC-QRO code vs. code A).

Figure 3 shows a trade-off between lower latency estimate (measured in clock cycles, the greater the worse) and hardware complexity (measured in gates, the greater the worse) for the NC-QRO code and Code B, for different decoding rates and . For each code rate R, a throughput threshold equal to 20 Gbps * R / Rmax is shown on the plot. To compare the NC-QRO code with the Code B, for both codes lower rate is limited by Rate=1/3 as the code B does not natively support rates lower than 1/3.

[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
[image:]
Figure 3. Latency vs. Hardware Complexity Trade-off (NC-QRO code vs. code B).

Observation 3: Compact NC-QRO base-matrix has benefits in terms of latency and hardware complexity trade-off.

Conclusions
This contribution discusses latency and hardware complexity using single and multiple cores for decoding. It is shown that the NC-QRO LDPC code outperforms other codes in terms of latency and hardware complexity trade-off.
In summary, the proposed design has the following characteristics:
Observation 1: NC-QRO structured LDPC code can reduce conflicts when using multiple cores and improve latency without performance degradation.
Observation 2: QSN can be applied for block-parallel implementation to support flexible lifting value.
Observation 3: Compact NC-QRO base-matrix has benefits in terms of latency and hardware complexity trade-off.

References
[bookmark: _Ref471726040]R1-1610472: “Evaluation of Adjusted-Min-Sum LDPC Decoder and Complexity Aspects of Permutation Networks”, Huawei, HiSilicon
[bookmark: _Ref471726042]R1-1610139: “Efficient Channel Coding Implementations for EMBB”, Qualcomm
[bookmark: _Ref463016228][bookmark: _Ref471747249]Studer et al, “Configurable high-throughput decoder architecture for quasi-cyclic LDPC codes”
[bookmark: _Ref471747252]Cheng, Lin and Akella, “QSN—A Simple Circular-Shift Network for Reconfigurable Quasi-Cyclic LDPC Decoders”
[bookmark: _Ref471725833]R1-1700246, “Complexity, throughput and latency analysis on LDPC codes for eMBB”, ZTE, ZTE Microelectronics
[bookmark: _Ref471565323]R1-1701706, “LDPC design for eMBB data”, Huawei, HiSilicon
[bookmark: _Ref471747676]R1-1701708, “Performance evaluation of LDPC codes”, Huawei, HiSilicon
[bookmark: _Ref473632842][bookmark: _Ref473800546]Chairman’s Notes, RAN1 AH, January 2017
[bookmark: _Ref473717837]R1-1700093, “Implementation aspects of LDPC codes”, Huawei, HiSilicon

image3.png

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image1.png

image2.png

