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--------------------------------------------- Unaffected parts are omitted for brevity --------------------------------------------------
7.1.3
Transformation from a LCS to a GCS

--------------------------------------------- Unaffected parts are omitted for brevity --------------------------------------------------
Any arbitrary 3-D rotation can be specified by at most 3 elemental rotations, and following the framework of Figure 7.1.3-1, a series of rotations about the z, 
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and 
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axes are assumed here, in that order. The dotted and double-dotted marks indicate that the rotations are intrinsic, which means that they are the result of one (() or two ((() intermediate rotations. In other words, the 
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 axis is the original y axis after the first rotation about z, and the 
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 axis is the original x axis after the first rotation about z and the second rotation about
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. A first rotation of ( about z sets the antenna bearing angle (i.e. the sector pointing direction for a BS antenna element). The second rotation of ( about 
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 sets the antenna downtilt angle. Finally, the third rotation of ( about 
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 sets the antenna slant angle. The orientation of the x, y and z axes after all three rotations can be denoted as 
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, 
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 and 
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. These triple-dotted axes represents the final orientation of the LCS, and for notational purposes denoted as the x’, y’ and z’ axes (local or "primed" coordinate system).

In order to establish the equations for transformation of the coordinate system and the polarized antenna field patterns between the GCS and the LCS, it is necessary to determine the composite rotation matrix that describes the transformation of point (x, y, z) in the GCS into point (x’, y’, z’) in the LCS. This rotation matrix is computed as the product of three elemental rotation matrices. The matrix to describe rotations about the z,
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and 
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 axes by the angles (, ( and ( respectively and in that order is defined as
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(7.1-2)

The reverse transformation is given by the inverse of R, which is also equal to the transpose of R since it is orthogonal.
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(7.1-3)

--------------------------------------------- Unaffected parts are omitted for brevity --------------------------------------------------
Let us denote the polarized field components
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[image: image17.wmf])

'

,

'

(

'

f

q

q

F

, 
[image: image18.wmf])

'

,

'

(

'

f

q

f

F

 in the LCS. These are related by
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(7.1-9)

In this equation, 
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 represent the spherical unit vectors of the GCS, and 
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are the representations in the LCS. The forward rotation matrix R transforms the LCS unit vectors into the GCS frame of reference. These pairs of unit vectors are orthogonal and can be represented as shown in Figure 7.1.3-3.
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Figure 7.1.3-3: Rotation of the spherical basis vectors by an angle ( due to the orientation of the LCS with respect to the GCS

Assuming an angular displacement of ( between the two pairs of unit vectors, the rotation matrix of equation (7.1-9) can be further simplified as:
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(7.1-10)

and equation (7.1-9) can be written as:
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(7.1-11)

The angle ( can be computed in numerous ways from equation (7.1-10), with one such way approach being 
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