3GPP TSG RAN WG1 Meeting #87	R1-1613018
Reno, USA, November 14th - 18th, 2016

Agenda Item:	7.1.5.1
Source:	Coherent Logix Inc.
Title:		 Polar Decoder Implementation on Memory-In-Network Processor based DSP
Document for:	Discussion and Decision

Introduction
[bookmark: _GoBack]As Polar Codes are under consideration for NR there has been much analysis of complexity and comparisons made of performance for various information block lengths, base Polar Code lengths, list sizes and code rates. These have either been measured on an FPGA proof-of-concept/prototype or projected for an ASIC realization [1], [2].
In this contribution, we show that Polar Codes can be readily realized with a Memory-In-Network Processor (MiNP) architecture, an example of which is available today, with inherent benefits derived from a software defined, virtual signal processing approach.
Memory-in-Network Processor DSP Polar Decoder Realization
A variety of Polar Decoders have been implemented on Coherent Logix’s commercially available Memory-In-Network Processor based DSP. Some experimental discovery of algorithms to reduce complexity were made early on and learnings regarding latency/ throughput/ complexity and performance trade-offs were applied to later implementations. While development efforts have centred on CA-SCL decoding, the architecture can easily accommodate other decoding algorithms introduced during the NR study, e.g. PC-SCL, Chained-SCL and Flip-SC.
The hx3100™ processor, based on 3rd generation HyperX™ technology, is the processor chip used in this NR evaluation. The chip has been commercially available since 2010 (65 nm).
The MiNP architecture [3] comprises an array of GPP/DSP like processing elements (PEs) embedded in a network of Data Memory and Routing (DMRs) as shown in Figure 1. Each PE has immediate access to four surrounding data memories. Adjacent PEs (as many as four) have shared visibility to a common data memory. Processing is event driven meaning that PEs return to a low power state whenever no input data is available or the PE resource is otherwise unallocated, either at compile or run-time.
The data memories are accompanied by routing facilities that provide PE connectivity anywhere on the chip accessible using the industry-standard Message Passing Interface (MPI) protocol. The IO Routers further permit an application to span chip boundaries as needed without altering the programming model. Routes are simply extended from one chip to the next with latency adjustments made to account for additional length from/to the respective send/receive routers.
The instruction set includes fixed-point and floating-point operations fully accessible in ANSI-C. The decoder implementations to date have been built entirely in fixed-point.
[image:]
[bookmark: _Ref464823743]Figure 1 HyperX Memory-in-Network Processor Architecture
Implementation Considerations of a DSP-based Polar Decoder for NR
A real-time implementation of the SCL decoder for small information blocks has been realized on the hx3100 processor. The design supports all block configurations with block size up to N = 2K as shown in [4]. Integral to the design is support for dynamic block configuration where a different small information block type can be selected on a block-by-block basis in terms of N, R and list size, L, employed by the decoder. The design uses the rate-matching scheme described in [4].
Table 1: NR Low-Rate Code Block Configurations
	
(I, N, L)
	Information bit length I (Input bit length K = I + 24 bit CRC)

	
	20 (K=44)
	40 (K = 64)
	100 (K = 124)
	200 (K = 224)

	Code Rate
	1/6
	(120, 128, 32)
	(240, 256, 32)
	(600, 1024, 16)
	(1200, 2048, 8)

	
	1/3
	(60, 64, 32)
	(120, 128, 32)
	(300, 512, 32)
	(600, 1024, 16)

[image:]
[bookmark: _Ref465846984]Figure 2: Example CA-SCL Decoder
The design is parallelized foremost on L as depicted in Figure 2. Implemented in this manner, the design permits the decoder to simultaneously pursue L-paths in parallel as a means to improve bit error performance without materially impacting latency. Any increased latency is due primarily to the added processing encountered on path sorting as list size increases whereas the time for LLR processing remains largely the same.
Per path processing is responsible for f and g operations associated with LLR estimates used in determining path metric (PM) updates. See Figure 3. The RFAU is designated to Rank, Flag, Assign, and Update bit estimates. It is not invoked (greyed out in the diagram) on frozen bits or bits deemed reliable, based on construction of the polarization graph if not by some other means, for which list processing is suspended. The f and g operations are replicated as paths are added up to the prescribed maximum, L.
[image:]
[bookmark: _Ref465848720]Figure 3: Per Path Processing for LLR computation, example N = 4 (Figure-1 of [7])
Features of the MiNP architecture used in realizing the current decoder design can be summarized as follows:
· Seamless Context Switching (stage-by-stage processing as depicted in Figure 3):
a) Single PE design with operations unrolled in the lower stages to minimize overhead for frozen Node and Rate One node processing.
b) Single PE per path in higher stages (s > 3) eliminating the need for data exchange, i.e. memcpy on path swap, until the decoder reaches the bottom of the tree.
c) At the bottom of the tree, distributes processing in all paths to multiple PEs using shared memory to sync and communicate among paths.
· Software configurability to dynamically adjust N, R, L on a block-by-block basis; the same might be leveraged to adjust the expected checksum when implementing PC-SCL.
· Software configurability further enables support for eMBB small blocks, URLLC, mMTC, and Control Channel in the same processing resources. The PE responsibility can adapt based on context of the task at hand.
· Parallelization on L to minimize latency for SCL decoding; further resource sharing within each path to maximize decoder throughput.
· Shared Data Memory eliminates the need for memcpy on path swapping.
· Multi-lane routing fabric, configurable via MPI, eliminates the need for an explicit cross-bar switch which typically hampers ASIC or FPGA implementations.

[image:]
Figure 4: Per stage Context Dependent Processing, example L = 4
The integrated software development environment enabled us to rapidly implement and experiment with many variations of Polar decoders on the processor and to do real-time BLER measurements, latency, and power analysis. Performance of the fixed-point real-time CA-SCL decoder was characterised and validated against ‘C’ models. This was checked against published results in [4]. Figure 5 shows an example of a run-time comparison of error-rate and SNR of two code rates for the same block length. The implementation is configurable across code rate, block length, list size, and information block plan.
[image:]
[bookmark: _Ref465867217]Figure 5: Real-time Capture of Error Rate vs SNR for CA-SCL Decoder
The Polar Decoder implemented on the hx3100 processor was developed for evaluation purposes and was not optimized for latency/resource utilization. Latency, area and power consumption can be evaluated with an implementation that meets the NR specification on a manufacturing process technology e.g. 14nm that would be suitable for deploying a product.
Configurability and Efficiency with Memory-In-Network Processor DSP
Polar Decoders implemented with a Memory-In-Network Processor DSP provide configurability and efficiency:
· Decoding parameters can be dynamically updated.
· Software-defined decoders can optimize the decoding parameters for URLLC, MTC, eMBB small block and Control Channel dynamically by simply re-loading different codes.
· Unused resources can be switched off or allocated for other operations dynamically. This opens up many opportunities for power savings.
· Early termination with Polar Codes are supported which further reduces the overall power consumption. For example, through the use of multiple threads with different list sizes.
Conclusion
Several forms of Polar Codes have been implemented on Coherent Logix’s hx3100 processor during the course of the NR study. Benefits we have found in taking a DSP approach include seamless context switching maximizing resource efficiency, dynamic configurability to enable a single design that is flexible in block size, code rate, list size, while being able to experiment with different information block plans (i.e. good vs. bad bit allocations, information vs. frozen bit assignment), different decoding algorithms.
As in all of Coherent Logix’s developments, learnings from this exercise are being applied to future generation products to continue to reach ASIC-like latency/power/size performance for NR while retaining the dynamic configurability of the MiNP architecture. This approach ensures that all FEC requirements, as well as other PHY processing blocks, can be accommodated while continuing to provide flexibility for change with everything virtualized.
Observation-1: Efficient decoders for Polar Codes can be implemented with MiNP architecture processors available today.
Observation-2: Efficient implementations can be achieved for real-time polar decoders
Observation-3: Error performance for low code rates, small block sizes can be maintained with increased list size up to 32.
Observation-4: Processing may be parallelized based on list size enabling decoder implementation tailored on a per block basis to deliver the required reliability without compromising latency.
Observation-5: The ability to dynamically reconfigure processing resources permits a system design capable of meeting the needs of a range of NR use-cases in a common processor architecture.
Conclusion-1: Polar Codes are a suitable candidate for eMBB small blocks, URLLC, mMTC, and Control Channel processing.
Recommendation-1: Polar Codes should continue to be considered alongside LDPC for eMBB small blocks, URLLC, mMTC, and Control Channel given the feasibility of an efficient decoder implementation based on a programmable MiNP architecture.
References
[1] [bookmark: _Ref465859807][bookmark: _Ref465857732]R1-1608862, “Polar Code Construction for NR”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #86bis, Oct. 2016.
[2] [bookmark: _Ref465859812]R1-1608865, “Design aspects of Polar Code and LDPC for NR”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #86bis, Oct. 2016.
[3] http://www.coherentlogix.com/products/hyperx-processors/, “HyperX Processors”, Coherent Logix.
[4] [bookmark: _Ref465839128]R1-164378, “Performance of channel coding schemes for mMTC and uRLLC scenarios”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #85, May 2016.
[5] R1-164039, “Polar codes - encoding and decoding”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #85, May 2016.
[6] RI-167215, “Channel coding schemes for mMTC scenario”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #86, Aug. 2016.
[7] [bookmark: _Ref465992721]R1-164040, “On latency and complexity”, Huawei, HiSilicon, 3GPP TSG RAN WG1 Meeting #85, May. 2016.

image5.jpg
polarPerformance - performanceTB/latest/performanceTB/packetGenRm/v/0/packetGenerator.c - HyperX ISDE -+ X
File Edit Source Refactor Navigate Search Project Run Window Help

(mi v N QY™ - - - - Quick Access. E5 | @@ HyperX Resource %5 HyperX Debug |45 polarPerformance

Brs v=a8

rror Rate Data 33 o

Data Sets 1
Current | URLLCR1_3 INFOBITS20_QPSK

Previous [URLLC R1_6 INFOBITS20_ QPSK | |x|

SNR (d8)

Current (48

Result Totals

Packets [141,000

g
sits (2,620,000 5
! o001
View g
= &
(] Show Counts
@ ShowLegend
Set Graph's Range
1.0e-03
URLLC_R1_3_INFOBITS20_QPSK URLLC_R1_6_INFOBITS20_QPSK *
+ Packet Error Rate
+ Packet Error Rate * Bit Erfor Rate

* Bit Error Rate
- Currently Running Test

1.0e-04

SNR (dB)

image1.png

image2.emf
Initialize llrs α

with Channel LLRs

Initial Stage

For (b=1:N-1) For (b=1:N-1)

b == N/2?

descendTree

Initialize LLR α

with Channel LLRs

Sort Paths

Select Paths

Copy/ Clone

Update PMs

b == N/2?

descendTree

Initialize LLR α

with Channel LLRs

Update PMs

For (b=1:N-1)

b == N/2?

descendTree

Initialize LLR α

with Channel LLRs

Update PMs

For (b=1:N-1)

b == N/2?

descendTree

Initialize LLR α

with Channel LLRs

Update PMs

ascendTree ascendTree ascendTree ascendTree

image3.emf
g13

ck=7

g12

ck=8

f02

ck=9

PM

ck=10

PM

ck=13

g03

ck=12

u1

XOR

1,23

ck=11

u0^u1

u0

f10

ck=0

f11

ck=0

f00

ck=1

g01

ck=4

f02

ck=9

g13

ck=7

g03

ck=12

RFAU

ck=3

RFAU

ck=6

RFAU

ck=11

RFAU

ck=14

XOR

1,01

ck=7

XOR

1,23

ck=15

S10 S20

S21

S22

S23

S11

S12

S13

s01 s11

s00 s10

s02 s12

s03 s13

y0

u0

u1

u2

u3

PM

PM

PM

PM

PM

y1

y2

y3

s10

s11

s12

s13

u2

PM

ck=2

PM

ck=5

PM

ck=10

PM

ck=13

g12

ck=8

image4.emf
(a)

(b)

(c)

