3GPP TSG RAN WG1 Meeting #87	R1-1613000
Reno, USA, November 14-18, 2016

Agenda Item:	7.1.5.1
Source:	Huawei, HiSilicon
Title:	On Quasi-ML and OSD decoders
Document for:	Discussion/Decision

[bookmark: _Ref124589665][bookmark: _Ref71620620][bookmark: _Ref124671424]Introduction
In RAN1#86bis, several decoding methods for short codes were presented, particularly ordered statistics decoding (OSD) for LDPC codes [1] and BCH/Reed-Müller codes [2], and SC list (SCL) decoding for polar codes [3]. In this contribution we evaluate OSD for short LDPC codes, turbo codes and eBCH and RM codes, and we compare it to SCL decoding of polar codes.
Quasi-ML decoders and OSD
For short-length codes, iterative decoding methods like belief propagation decoding (BPD) and turbo decoding (TD), including variations like min-sum decoding and maxLogMAP (MLM) decoding, do not provide sufficiently low error-rate performance. Therefore other decoding methods are required. Quasi-ML candidate algorithms are (a) ordered-statistics decoding (OSD), also called most-reliable-basis MRB decoding, and (b) hybrid BPD-OSD where OSD is activated if BPD fails. Another alternative is SCL decoding for polar-like codes.
Description of ordered-statistics decoding
OSD is based on the generator matrix (or check matrix) of the code, and is thus not code-specific. Assume a code of length N code bits and K information bits (dimension K), and generator matrix G. First, the received vector is sorted in decreasing order of magnitude, and the corresponding permutation is applied to the columns of , yielding . Gaussian elimination is then performed to in order to construct a systematic generator matrix . An additional column permutation may be necessary to obtain the systematic form. Let denote the vector of component-wise hard-decisions on . Let and denote the first bits of . For OSD of order w, test error patterns (TEP) of length K bits and Hamming weight less than or equal to w are generated. They are added (binary additions) to the hard-decision information bits , and the corresponding codeword is obtained by re-encoding with the systematic generator matrix The trivial TEP results in the order-0 OSD codeword . The TEP results in the codeword . Inverting the permutations yields the estimate . After every re-encoding operation, the metric between the OSD codeword and the received vector is calculated as .
For order- OSD, the maximum Hamming weight of the TEPs is . The OSD algorithm terminates when all error pattern of weight less than or equal to have been tested. The codeword with the minimum metric is selected as the output of the algorithm.
OSD is not sensitive to SNR estimation errors since the algorithm does not use the SNR. The same holds for SCL decoding, discussed below.

Implementation issues
Complexity analysis
The computational complexity of the OSD algorithm is summarized in Table 1. Here, is the code length, is the information block length, is the average column weight of the generator matrix , is the minimum distance of the code, and w is the OSD order.

Table 1: Computational complexity of OSD.

	Operation
	Complexity

	Sorting
	 comparisons

	Gaussian Elimination
	 XOR operations

	Re-encoding
	 XOR operations

	Metric computation
	 real additions

Observation 1: The computational complexity of OSD is of the order of for .

Latency analysis
OSD has a sequential decoding nature. The latency analysis of OSD is provided in Table 2. For re-encoding, we assume pipelining and that the re-encoding operation can be completed within one clock cycle.

Table 2: Latency of OSD.

	Operation
	Latency (Clock cycles)

	Sorting
	

	Gaussian Elimination
	

	Re-encoding
	

Observation 2: The latency of OSD is of the order of for .

Flexibility issues
Gaussian elimination
The complexity of Gaussian elimination is related to the size of the processed matrix which can be either the generator matrix or the parity-check matrix. The worst case corresponds to rate R = 1/2. In this case, the complexity of Gaussian elimination is of the order of .
Choice of the order
In order to be quasi-ML, the order of OSD has to be [7]. When the code rate decreases, or when the code length increases, the minimum distance increases. Therefore, a larger order is needed to approach the ML performance, as shown in the examples in Fig. 1. As an extreme example, the Varshamov-Gilbert bound for K = 1024 and R = 1/5 gives a minimum distance of 1248. In order to provide quasi-ML performance in this case, the order of OSD has to be about 311, and this is prohibitively complex for implementation.
As also shown in Fig. 1a and 2b, quasi-ML decoding requires the use of OSD with variable order, which adds further implementation issues. From Fig. 1a,, ML performance is achieved with OSD of order 3 for a code rate 2/3, while OSD of order 4 performs still far away from ML decoding for a code rate of 1/6. In Fig. 1b, a similar behaviour is observed for longer codes at the same rate.

[image:]
Fig. 1a: Performance of LDPC codes [1] under OSD of various orders; K = 120.

[image:]
Fig. 1b: Performance of LDPC [1] codes under OSD of various orders; R = 2/3.

Observation 3: OSD does not match the flexibility constraints of NR.

Discussion
In conclusion, OSD for short codes has a very high implementation complexity, its decoding latency does not fulfil the 5G requirements and it does not provide the flexibility required by NR.

OSD for specific short-length codes
LDPC codes
We consider the performance of an LDPC code [2] for rate 1/2 and information block length 100 and analyse the trade-off between performance and complexity/latency. Simulation results are shown in Fig. 2. As can be seen, OSD of order 3 is required to outperform layered offset min-sum (LOMS) decoding with 25 iterations. The performance gain obtained by increasing the OSD order by 1 is decreasing with increasing OSD order. For LOMS combined with OSD, only very limited performance gain is observed.
[image:]
Fig 2: Performance of LDPC codes under OSD and LOMS.

Turbo codes
We now consider the performance of a turbo code of rate 1/2 and information block length 100; the results are shown in Fig. 3. OSD of order 3 or even 4 is required to outperform MaxLogMAP (MLM) decoding with 8 iterations. The performance gain obtained by increasing the OSD order by 1 is decreasing with increasing OSD order. For MLM combined with OSD, only a very limited performance gain is observed.
[image:]
Fig. 3: Performance of turbo codes under MLM and OSD.

BCH and RM codes
Extended BCH (eBCH) codes and Reed-Müller (RM) codes (for very short lengths) have excellent minimum distances and thus potentially provide very good performance under ML decoding. To approximate ML decoding with OSD, however, large OSD orders (as compared to LDPC codes or turbo codes) are required. This large decoding complexity limits their applicability for NR.
[bookmark: _GoBack]In [2] eBCH codes and RM codes, including a few examples of shortened codes, are proposed for NR control channels. No systematic design for puncturing and/or shortening is presented. OSD is proposed to approximate ML decoding.

Observation 4: OSD for eBCH and RM codes to approximate ML decoding is prohibitively complex in the general case. A systematic design for puncturing and/or shortening for eBCH and RM codes is still missing.

However, even though eBCH codes and RM codes are too complex to decode using OSD, they can be represented as polar codes. As a consequence, they can be efficiently decoded using SCL decoding.
RM codes are obtained from the Arikan kernel construction in the same way as polar codes, only with a different criterion for selecting the information bit positions (or equivalently frozen bit positions). While for polar codes, the positions are selected according to their reliability, for RM codes they are selected by the Hamming weight of their rows in the transformation matrix.
For eBCH codes, [8] provides a method for representing eBCH codes in a polar code like way. Thus, an eBCH code can be seen as a polar code with (normal) frozen bits and some “dynamic frozen bits”, allowing for SCL decoding.
Moreover, this polar code representation of RM and eBCH codes provides a much finer granularity, since we can use the methods for polar codes (rate matching methods), to obtain from RM and eBCH codes the desired codes corresponding to any rate and any length.

Observation 5: eBCH codes and RM codes can be represented as polar codes and can thus efficiently be decoded using polar-code SCL decoding.
Summary
Table 3 compares latency and computational complexity of the various decoding methods for LDPC codes and turbo codes, particularly those for OSD of different orders. For reference, also the values for SCL decoding of polar codes are provided.
OSD of order 2 has a significantly larger complexity than the corresponding iterative decoder. OSD of order 1 has a comparable complexity but then the error-rate performance is not sufficient. For larger info. block lengths K and lower rates R, even larger OSD orders are required; this will further increase latency and complexity.

Table 3: Latency and computational complexity for K = 100 and R = 1/2.

	Code
	Decoder
	Latency (clocks)
	Computational complexity

	LDPC
	Pure OSD
	Order0
309
	Order1
409
	Order2
5.36K
	Order3
167K
	Order0
67.7K
	Order1
97.7K
	Order2
2.08M
	Order3
82.9M

	
	LOMS 25
	700
	57.5K

	Turbo
	Pure OSD
	Order0
309
	Order1
409
	Order2
5.36K
	Order3
167K
	Order0
431.7K
	Order1
461.7K
	Order2
2.44M
	Order3
83.3M

	
	MLM 8
	-
	166.4K

	Polar
	SC-List
	-
	List-8
20.4K
	List-32
94.4K
	List-512
1.92M
	List-16384
77.8M

Observation 6: Only OSD of order 1 is acceptable from a complexity point of view eMBB channels.

SCL decoding for polar codes
The SCL decoder is not a quasi-ML decoder in the same vein as OSD. SCL decoding exploits the polar code structure (imposed by iteration of the Arikan kernel through Kronecker products) while OSD is universal. SCL decoding benefits from (i) the polarization of the channel through the SC decoding component, and (ii) from distance properties of the code through list decoding and the coupling of some info bits by the parity-check part of the code construction [3]. On the other hand, OSD only benefits from the distance property of the code.
The performance of Polar codes under SCL decoding is presented in Fig. 4, together with LDPC codes and Turbo codes under OSD. For SCL decoding with list length 8 (SCL8), the performance is comparable to order-4 OSD. SCL256 outperforms OSD by 0.5 dB at BLER of , while its complexity is lower than that of order-2 OSD.

[image:]
Fig. 4: LDPC codes and Turbo codes under OSD versus Polar codes under SCL decoding.

Observation 7: Short polar codes under SCL decoding have similar or better performance than LDPC codes or turbo codes under OSD of order 4 or 5, while the complexity of SCL decoding is significantly lower.

Conclusions

Observation 1: The computational complexity of OSD is of the order of for .

Observation 2: The latency of OSD is of the order of for .

Observation 3: OSD does not match the flexibility constraints of NR.

Observation 4: OSD for eBCH and RM codes to approximate ML decoding is prohibitively complex in the general case. A systematic design for puncturing and/or shortening for eBCH and RM codes is still missing.

Observation 5: eBCH codes and RM codes can be represented as polar codes and can thus efficiently be decoded using polar-code SCL decoding.

Observation 6: Only OSD of order 1 is acceptable from a complexity point of view eMBB channels.

Observation 7: Short polar codes under SCL decoding have similar or better performance than LDPC codes or turbo codes under OSD of order 4 or 5, while the complexity of SCL decoding is significantly lower.

Proposal 1: OSD should not be considered as decoding method for performance assessment.
References
[1] 	R1-1609582, “Selection of eMBB coding scheme,” Nokia Alcatel Lucent Shanghai Bell, Verizon Wireless.
[2]	R1-1609591, “Reed-Müller and BCH codes for control channels,” Nokia, Alcatel-Lucent Shanghai Bell.
[3]	R1-1611254, “Details of the Polar code design,” Huawei, HiSilicon.
[4]	G. Liva, L. Gaudio, T. Ninacs, Jerkovits, “Code Design for Short Blocks: A Survey,” arXiv preprint arXiv:1610.00873.
[5]	J. van Wonterghem, A. Alloum, J. J. Boutros, M. Moeneclaey, “Performance Comparison of Short-Length Error-Correcting Codes,” arXiv preprint arXiv:1609.07907.
[6]	R1-1611256, “Performance evaluation of channel codes for small block sizes,” Huawei, HiSilicon.
[7]	M. Fossorier and S. Lin, “Soft-Decision Decoding of Linear Block Codes Based on Ordered Statistics,” IEEE Trans .on Inform. Theory, Sept. 1995.
[8]	Trifonov-Miloslavskaya-2016, P Trifonov, V. Miloslavskaya, “Polar subcodes,” IEEE Jour. On Sel. Areas in Comm., Feb. 2016.
[9] 	R1-1610314, “FEC performance comparison for short frame sizes for NR,” Institut Mines-Telecom and Orange.

image3.emf
Es/No (dB)

00.511.522.533.54

B

L

E

R

10

-3

10

-2

10

-1

10

0

LDPC performance info=100 R=1/2

LDPC Nokia OSD order0

LDPC Nokia OSD order1

LDPC Nokia OSD order2

LDPC Nokia OSD order3

LDPC Nokia OSD order4

LDPC Nokia OSD order5

LDPC Nokia LOMS 25

LDPC Nokia LOMS 25 + OSD order0

LDPC Nokia LOMS 25 + OSD order1

LDPC Nokia LOMS 25 + OSD order2

LDPC Nokia LOMS 25 + OSD order3

LDPC Nokia LOMS 25 + OSD order4

image4.emf
Es/No(dB)

00.511.522.533.54

B

L

E

R

10

-3

10

-2

10

-1

10

0

Info. Bits Len =100 R = 1/2 M=2

OSD with order = 0

OSD with order = 1

OSD with order = 2

OSD with order = 3

OSD with order = 4

MLM iter 8

MLM iter 8 + OSD with order = 0

MLM iter 8 + OSD with order = 1

MLM iter 8 + OSD with order = 2

image5.emf
EsNo (dB)

00.511.522.53

B

L

E

R

10

-3

10

-2

10

-1

10

0

OSD performance info=100 R=1/2

LDPC Nokia OSD order4

LDPC Nokia OSD order5

Turbo OSD order = 4

Polar PC-SCL8

Polar PC-SCL32

Polar PC-SCL64

Polar PC-SCL256

image1.emf
Es/No (dB)

-3-2-101234567

B

L

E

R

10

-3

10

-2

10

-1

10

0

LDPC performance info=120

info 120, R=1/6, order=0

info 120, R=1/6, order=1

info 120, R=1/6, order=2

info 120, R=1/6, order=3

info 120, R=1/6, order=4

info 120, R=2/3, order=0

info 120, R=2/3, order=1

info 120, R=2/3, order=2

info 120, R=2/3, order=3

info 120, R=2/3, order=4

image2.emf
Es/No (dB)

12345678

B

L

E

R

10

-3

10

-2

10

-1

10

0

LDPC performance R=2/3

info 64, R=2/3, order=0

info 64, R=2/3, order=1

info 64, R=2/3, order=2

info 64, R=2/3, order=3

info 64, R=2/3, order=4

info 200, R=2/3, order=0

info 200, R=2/3, order=1

info 200, R=2/3, order=2

info 200, R=2/3, order=3

