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1. Introduction
In this contribution, we provide some initial simulation results for NR MIMO beam search with simulation assumptions agreed in NR MIMO calibration email discussion [1]. The performance of compressive sensing based search is compared with the results of exhaustive search. 
In our previous contribution [2], the hybrid framework of beam management is setup. Two phases with and without a priori beam information has completely different behavior. In the phase without a priori information (initial access), how beam is constructed should be transparent to UE. Compressive sensing based search is not suitable for this stage. In the phase after initial access, a robust multi-stage control channel is built. eNB could leverage the channel to control how UE search finest beam. Compressive sensing could be used at this stage.
In the following simulation, we follow the basic simulation assumptions agreed in the email discussion. A possible case of beam search within a small range of fine beams is created to emulate the UE beam search behavior at the above mentioned second phase.
2. Initial simulation results
Simulation results using different number of subcarriers are shown in figure 1. From the figure we can see that the SNR loss of compressive sensing based search compared to exhaustive search is less than 3dB, while its overhead is only 1/8 of exhaustive search. Moreover, from SNR -10dB, there is very little gap between different densities of reference signals. Compressive sensing based beam search should be supported in NR.     

Table 1 Simulation parameters for compressive sensing based beam training
	Parameters
	Value

	Channel model
	CDL-A with delay spread of 100ns

	Bandwidth
	subcarrier spacing of 15kHz for 4GHz
subcarrier spacing of 60kHz for 30GHz

	BS antenna configuration
	M=N=8, P=2, Mg=Ng=1, dH=dV=0.5

	BS port mapping
	64 elements for each polarization on each panel are mapped to a single CRS port

	UE antenna configuration
	M=N=4, P=2, Mg=Ng=1, dH=dV=0.5

	UE speed
	3km/h

	pilot
	Time- invariant random symbol for different subcarriers

	codebook
	DFT based pre-coding with 25 candidate transmitting beams and 16 candidate receiving beam

	Number of training beam pairs
	50 random beam pairs with  Bernoulli distributed elements
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Figure 5-1 Performance of subcarrier spacing 15kHz (Left) and 60kHz (Right)

3. Conclusion
Proposal 1: Compressive sensing based beam training schemes should be studied in NR to reduce training overhead.
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Appendix A: Introduction of Compressive Sensing
The classical theory behind the encoding analogs into digital streams and decoding streams back into analogs is based on the famous Shannon/ Nyquist Sampling Theorem. It tells us that in order not to lose information, we must sample the signal at least two times faster than its bandwidth. However, when the sampled signal is sparse(only a few elements of the digital bits are none-zero) or approximately sparse, it is possible to introduce a new sampling and processing method to significantly reduce the sampling rate, which is called compressive sensing.
Compressive sensing has been widely studied in signal processing, statistics, and computational harmonic analysis etc. See [2] [3] for a detailed description of compressive sensing theory. In order to review the theoretical principle, consider a linear measurement model

Where  is a known measurement matrix comprised of the measurement vectors as its rows,  is an unknown vector, and  is stochastic noise. The goal is to reliably reconstruct  from the knowledge of  and . One of the central tenets of compressive sensing theory is that if  is sparse or approximately sparse, then a relatively small number—typically much smaller than the length of —of appropriately designed measurement vectors can capture most of its salient information. 
In addition, recent theoretical results have established that if the measurement matrix obeys the restricted isometry property (RIP),  in this case can be reliably reconstructed from . It has been proved that independent and identically distributed Gaussian random matrix can meet the requirement of RIP, other measurement matrices can also be considered, e.g. Bernoulli, random partial Fourier or scrambled block Hadamard ensembles, etc.
To achieve a robust reconstruction of , Candes[4] pointed out that if the number of measurement time is more than , where ,  is the sparsity level, N is the length of , then we can reconstruct  stably with high probability via the l-1 optimization which is a simple convex optimization problem. Among the existing reconstruction algorithms, basic pursuit (BP) requires a minimal number of measurements but has high computational complexity. Another popular recovery algorithms is based on iterative greedy pursuit which has much lower computational complexity, e.g. matching pursuit (MP), orthogonal matching pursuit (OMP), etc.
For NR scenario where large antenna array is applied, the set of candidate beamforming vectors is very large at eNodeB side. If beamforming is also applied at UE side, the number of candidate beam pairs can be much larger. This will lead to very large training overhead if using exhaustive searching method. Nevertheless, the direction of each beam generated by a specific codebook is typically different, and the sidelobe has much lower power gain than the mainlobe. Thus, the effective channels combining different beam pairs have limited high power combinations, which can be treated “sparse”.
Compressive sensing based beam training has been studied for a long time, here we give one example, and detailed description can be found in [5].Let  denote the maximum delay of discrete channel,  is the channel coefficient,  and  represent the reception and transmission steering vectors, then the channel model can be expressed as

Assume the training pilot is  with CP and normalized power, and the transmission and reception training vectors are  and  respectively. Then the reception symbols of the i-th training beam pair are expressed as

Where


 is complex white Gaussian noise with zero mean and variance equals as the antenna number of the receiving UE.
In most cases, the best beam pair of the channel is the same as the best beam pair of the dominant path. We can estimate the effective channel using classical channel estimation method, e.g. LS, MMSE, etc.
Assume the dominant path is , the candidate reception and transmission codebook are  and  respectively, then the best beam pair  is depicted as


Where , , meanwhile , .
Thus the estimated effective channel can be expressed as
                       
                            
                             
                             
Hence, the equation can be , which is a typical compressive sensing expression, where , . Finally we can obtain the best beam pair by estimating  through reconstruction methods.
Notice that in order to ensure measurement matrix  obeys the restricted isometry property, the transmission training vectors  and reception training vectors  should be randomly generated. In case of beam training from a small number of beams, the random training vectors could be generated by weighted summation of the candidate beam vectors.
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