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1 Introduction

In this contribution, we evaluate the performance of two families of algebraic codes Reed Muller and BCH codes for short code length as candidates for control channel coding and also for MTC/ URLLC use cases.  We also show how these coding schemes compare to other code families.
The evaluation is done assuming a universal soft decoder with near maximum likelihood performance, in order to compare codes on the basis of same decoder.
2 Candidates Coding Schemes
2.1 Reed Muller (RM) Codes:
RM codes are appreciated for being good practical extended cyclic codes meeting BCH codes in some instances of their generalization; they exhibit good geometrical and nesting properties and are good basis for constructing other codes, as they are a part of the LTE standard with the encoding of channel quality control information. R(r, m) denotes Reed Muller codes with code length 
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Reed Muller codes can be constructed by several approaches [1-3]. In our scheme, we select the approach based on Kronecker product 
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 in order to beneficiate from the nested construction granularity. One classical approach consists in selecting all the rows with weight at least 
[image: image4.wmf]r

m

-

2

 of the matrix.
In order to provide a generator matrix for any
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, after performing the Kronecker product
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largest Hamming weight 
2.2 BCH Codes: 
BCH codes form a large class of powerful random error correcting codes. This class of codes is a generalization of Hamming code.

For any positive integers 
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, there exists a binary BCH code with codelength 
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 and minimum distance 
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A t-error correcting BCH code is described by a generator polynomial  
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 as its roots where 
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The generator matrix of (m,t) BCH code is the 
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 matrix constructed by taking as its columns the coefficients of 
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An extension by one parity bit is made to get an even length. Then we use shortening and puncturing to get the required information block length and coding rates.
Some discussions on good energy efficiency of BCH can be found in literature [4]. 
Table 1: BCH Mother Codes
	R
k
	1/3
	1/2

	48
	255,163

255,155
	127,78

	64
	255,131

255,123
	127,64

	80
	255,99

255,91
	255,179

255,171

	200
	
	511,313


Table 2: BCH Codes after shortening (bold one parity bit added)
	R
K
	1/3
	1/2

	48
	140,48

148,48
	97,48

	64
	188,64

196,64
	128,64

	80
	236,80

244,80
	156,80

164,80

	200
	
	400,202 


Table 3: Deviation from original rate

	R

K
	1/3
	1/2

	48
	+-3%
	-1%

	64
	+-2%
	+0%

	80
	+-2%
	+-3%

	200
	
	+1%


2.3 Universal Soft Decision Decoder 
Soft Decision decoding by the receiver is performed using the Ordered Statistic Decoding OSD algorithm, an efficient most reliable basis (MRB) decoding algorithm firstly proposed by Dorsch [5], further developed by Fang & Battail [6] , and later analyzed and optimized by Fossorier and Li [7]. 

(1) Channel observation vector y is sorted in decreasing order of confidence value.
(2) Hard decoding is performed on the K most reliable symbols of the sorted vector.
(3) The sorting permutation is applied to the generator matrix G, yielding G’. 

(4) Gaussian elimination is now performed on G’ to construct the systematic G’’

(5) For
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 is the order of the OSD.
i. Generate exhaustively all Test-error patterns (TEPs) vectors ei of weight i and size k. 
ii. Add each TEP ei to the hard decision of the K most reliable symbols.

iii. Recode the K most reliable symbols corrupted by TEP ei with G’’.
iv. Undo the permutations involved by G’ and G’’.  

v. Evaluate Euclidean distance between generated codeword and observed vector y.
vi.  If the distance is lower than that of the current best previous codeword, we select ˆthe candidate codeword as the new best codeword estimate. 
(6) The algorithm is terminated after a predetermined number of reprocessing order 
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It was shown that the order L of reprocessing equivalent to the hamming distance of the TEP, is asymptotically optimal (ML) and practically sufficient to achieve ML performance for bit error rates larger than 
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 where 
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is the minimum distance of the code. An OSD of order 
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consists of (i+1) processing phases and requires a total of 
[image: image28.wmf]÷

÷

ø

ö

ç

ç

è

æ

+

+

÷

÷

ø

ö

ç

ç

è

æ

+

i

k

k

...

1

1

candidates codeword to make a decoding decision.

Accordingly the complexity of the algorithm is
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 which reduces the Maximum likelihood time decoding complexity that is conjectured to be exponential in the code length and consequently known ML algorithms are unable for instance to perform MLD of rate one half codes and length greater than 128 [8].
Many optimizations and improvements of the OSD have been developed in the literature to bring the best tradeoff between the complexity and the performance through devising alternative stopping criteria’s and skipping rules to the original OSD version.[9-11].
OSD decoding doesn’t require any code structure neither specific model and constraints as it can be applied to any linear block code. It is a universal soft list decoder [12-15] 
2.4 Performance Evaluations
We consider simulations for several code families considered in 5G discussions namely LDPC, Turbo Codes, TBCC, Polar codes in comparison with BCH and RM codes for rate R=1/2 and R=1/3, with short information block length k = 48, 64, 100, 200. We have chosen these information block length among the ones agreed for control channel coding, and also from other use cases (MTC/URLLC and eMBB simulation assumptions).

For Reed Muller and BCH codes OSD decoder is considered and no CRC is used.
Polar codes are used with CRC and decoded with successive cancelation list decoding of list size 4.

Turbo codes and TBCC are decoded with scaled max-log-map and Viterbi, respectively. 
LDPC in Figure 1-3 are decoded under offset min-sum decoder. In Figure 4, we use both min-sum decoder and OSD to decode LDPC code with k = 100. Maximum likelihood lower bound performance defined and used in [16] is shown in Figure 4. 
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Figure 1 : Performance for Rate=1/3 k = 48 and 64bits
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Figure 2: Performance for Rate=1/2 k=48 and 64bits
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Figure 3: Performance for Rate=1/2 k = 200 bits
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Figure 4 : Performance for Rate=1/2 k=100 bits
3 Discussion
We observe and confirm from simulations results that using the OSD decoder we obtain near ML performance for algebraic codes like BCH and Reed Muller code. Besides OSD decoding algorithm can be applied to any code family and bring the best decoding capacity of the codes. This statement enables to compare codes and not decoders. [4][9][15]
· The OSD decoder complexity can be optimized by using several approaches extensively studied in the literature [6-8].
·  The simulation shows that BCH performance under OSD decoding over AWGN channel outperforms all code families for the considered short and medium code length, even the polar code that is concatenated to a CRC. This is explained by the excellent minimum distance of BCH code family.
· On Figure 4 we observe that decoding LDPC under OSD decoding bring the performance to its maximum likelihood bound which brings more than one dB gain in the discussed figure. This leads to consider a combination of belief propagation decoder with OSD decoder for LDPC codes given the code length to be decoded and the tolerated decoding complexity [9, 15]. For all other cases, LDPC decoded under min-sum decoding still bring good performance for low complexity compared to other decoders.
· LDPC performance is enhanced when the code length increases for a fixed coding rate, because they are asymptotically good and their minimum distance increases with the code length.

· BCH code performance is superimposed to random code in Figure 4, which is the best code for short length.

Based on the results mentioned above and the discussion, we can provide following observations and proposals. 
Observation 1: OSD decoder allows better comparison between all codes categories for short and medium length and brings lower time and algorithmic complexity than ML decoder.
Observation 2: BCH Codes outperform other coding families in all simulation schemes, this is explained by their excellent minimum distance. BCH codes meet random coding performance.
Proposal 1: BCH Codes meet LDPC performance in some coding schemes under OSD Decoding. OSD Decoding can be used as an alternative decoding algorithm to belief propagation for LDPC codes when the code lengths are short and medium in order to bring them to a near ML performance. 
Observation 3: LDPC codes bring good performance under low complexity min-sum decoder, and performs even better when they are decoded by OSD decoding.
4 Conclusion
Observation 1: OSD decoder allows better comparison between all codes categories for short and medium length and brings lower time and algorithmic complexity than ML decoder.
Observation 2: BCH Codes outperform other coding families in all simulation schemes, this is explained by their excellent minimum distance. BCH codes meet random coding performance.
Proposal 1: BCH Codes meet LDPC performance in some configurations under OSD Decoding. OSD Decoding can be used as an alternative decoding algorithm to belief propagation for LDPC codes when the code lengths are short and medium in order to bring them to a near ML performance. 
Observation 3: LDPC codes bring good performance under low complexity min-sum decoder, and performs even better when they are decoded by OSD decoding. Besides LDPC are asymptotically good codes in contrast with all other codes.
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