Page 1
3GPP TSG-RAN WG1 #87 	R1-1612085
14th – 18th November 2016
Reno, USA

[bookmark: Source]Agenda item:	7.1.5.1
Source: 	Qualcomm Incorporated
Title: 	Implementation for short blocks in EMBB
[bookmark: DocumentFor]Document for:	Discussion/Decision
Introduction
Recall from the previous RAN1 #86bis [1], it was agreed to the following
· [bookmark: _GoBack]The channel coding scheme for eMBB data is LDPC, at least for information block size > X
· FFS until RAN1#87 one of Polar, LDPC, Turbo is supported for information block size of eMBB data <= X
· The selection will focus on all categories of observation, including overall implementation complexity, regardless of the number of coding schemes in the resulting solution (except if other factors are generally roughly equal)
· The value of X is FFS until RAN1#87, 128 <= X <= 1024 bits, taking complexity into account
· The channel coding scheme(s) for URLLC, mMTC and control channels are FFS

In this contribution, we investigate the energy efficiency of using LDPC or polar codes for short EMBB data blocks.
In addition to energy efficiency, implementation area for one- and two-code solutions for EMBB data is investigated. We show that using the same LDPC decoder for short and long blocks is significantly more area efficient than introducing another code for short blocks.
Discussion
Computational Complexity and Energy Efficiency
In the absence of power measurements from fabricated chips in the literature, we use the average computational complexity as a proxy for energy efficiency. This is more accurate than using maximum decoding latency as the metric for calculating energy efficiency [2] because computational complexity reflects switching activity and dynamic power in a circuit, which are the major contributors to power consumption. In addition, using maximum latency assumes the decoder circuitry is active the entire time. However, iterative decoders often employ early termination mechanisms, by means of which the decoder can enter a low-power state as soon as it converges to a codeword [3].
To simplify this analysis, we exclude simple binary operations such as AND, OR, and XOR from the computational operation count. We also exclude multiplexing and routing.
Computational Complexity of an LDPC Decoder
The adjusted min-sum decoding algorithm was shown to have similar performance to the sum-product algorithm, but with the memory footprint of the min-sum algorithm and a simple hardware implementation [4].
In a decoding iteration, each of the N variable nodes calculates output messages according to
. If all the check nodes messages are accumulated first, then the message is subtracted from the total to calculate , the variable node requires additions to calculate all its output messages. Therefore the total number of operations performed by all variable nodes in an iteration is additions.
A check node uses the boxplus (operation as its basic building block. In a fixed-point adjusted min-sum decoder, the operator can be implemented as defined in [4]:
Implementation of , where and are both positive:
· If , swap the values of and .
·
· If
·
· Else
·
Where is the least significant bit in . Therefore the operation involves one comparison and three additions. The comparisons with 1 and 2 can be performed by ORing the most significant bits of a value and are therefore excluded from the complexity comparison.
Following the update rule in [4], a check node performs min operations and boxplus operations. There are check nodes in the code and since , the total number of operations performed by the check nodes in the decoder per iteration is comparisons and additions. The decoder performs absolute value calculations on the variable node output messages and sign-application operations (subtractions) on the check node output messages. Further details about the adjusted min-sum algorithm can be found in [6].

[bookmark: _Ref466012222]Table 1 Number of operations in I iterations of an adjusted min-sum LDPC decoder
	Additions
	Comparisons
	Absolute Value
	Sign Application
	Total

	
	
	
	
	

Table 1 summarizes the number of operations performed in one iteration of the adjusted min-sum LDPC decoder. Since all these operations have a complexity similar to that of an addition, a total operation-count column is supplied which is the total sum of all operations.
Due to early termination, once the decoder converges, it can be power- or clock-gated to save energy. Therefore, even power consumption due to leakage can be reduced.
Computational Complexity of a Polar List Decoder
A List decoder for polar codes, performs the and operations times per list item. The operation is defined as:
, which requires two absolute value calculations, one comparison, and one sign application.
 The operation is defined as when and when and can be performed using one addition.
When one of the information bits is encountered in the decoding process, a total of paths are created, requiring additions to calculate the new path metrics. The path metrics are sorted and only the most reliable paths are retained. To reduce the latency of sorting in a practical polar list decoder, a parallel sorting network is utilized instead of a lower complexity, but higher latency, serial sorter. The sorting network performs comparisons.
Partial-sum updates are omitted from the complexity analysis since they are performed using XOR and address look-up operations.

Table 2 Number of operations in a polar list decoder with list size L
	Additions
	Comparisons
	Abs.
	Sign App.
	Total

	
	

	
	
	

[bookmark: _Ref466053010]Computational Complexity Comparison
In this section we compare the computational complexity required to achieve a block-error rate (BLER) of 0.01 at different signal-to-noise ratio () values. For the adjusted min-sum LDPC decoder, the maximum iteration count and the average number of iterations is used to calculate the average computational complexity. For polar codes, a fixed list size was used because using an adaptive list decoding approach incurs a very large increase in decoding latency since decoding must be restarted for every change in list size [7].
[image:] [image:]
[bookmark: _Ref466020358]Figure 1 Computational complexity for information block length K = 100
In Figure 1, the number of operations performed at the SNR value required to achieve a BLER of 0.01 are shown for an information block length of 100. The polar code results were reported in [8] and are for the parity-check (PC) polar list decoder with list size 8 and 32. We observe that the adjusted min-sum LDPC remains within 0.2 dB of the polar decoder with list 8 for most rates, within 0.4 dB for all rates, and has lower computational complexity. Using L = 32 improves the performance of the polar decoder, but at a very high cost in computational complexity.
[image:][image:]
[bookmark: _Ref466052713]Figure 2 Computational complexity for information block length K = 400

[image:][image:]
[bookmark: _Ref466023153]Figure 3 Computational complexity for information block length K = 1000
Figure 2 and Figure 3 show that the adjusted min-sum decoder out-performs the polar decoder with list size 8 and has comparable performance to list 32 at a lower computational complexity in most cases for K = 400 and 1000.
Observation 1: LDPC codes have lower average computational complexity than polar codes at comparable performance levels for short block lengths.

[bookmark: _Ref466049083]Implementation Overhead Using a Different Code for Short Blocks
In [9], polar decoders for different code block lengths were implemented. The smallest of which supported N = 1024 and L = 8 and had an area of 0.24 mm2 in 14 nm technology. An N = 1944 flexible LDPC decoder was presented in [10] we scale it here to N = 40,000 to provide a baseline area estimate for the long block LDPC decoder.
These scaling results are presented in Table 3. Two decoder properties were changed. The block length was increased from 1,944 to 40,000, leading to a linear increase in memory area by a factor of 40,000/1,944. The change is increasing the maximum lift size (Zmax) from 81 to 320. As shown in [13], the flexible switch area (QSN) scales according to . Therefore the switch area increases by a factor of . The area required by the node processors is linearly increased by a factor of 320/81 = 4. This method was used in [11] to arrive at the same results.
A third, “High-throughput Scaled”, decoder is added. It’s scaled from [10] using the same methodology of [11] with the intent of increasing throughput for long block codes by increasing the number of processing elements (NCU) and adding a second switch (QSN) to decode two base graph columns with lift size Z = 320 simultaneously. A second switch is added instead of using a larger because the lift size is not increase, only the number of columns processed in parallel. As was described in [12], and to support higher throughput for decoding medium block lengths, support for decoding 8 columns with lifts of size up to 80 was added by means of a another switch to represent an upper bound on the increase in complexity. In a practical decoder, the main switch would be made more flexible.
[bookmark: _Ref466032299]Table 3 Area requirements of the large-block (N = 40000) LDPC decoder
	
	Ref. Design [10]
	Scaled [11]
	High-throughput Scaled

	N
	1944
	40,000
	40,000

	Zmax
	81
	320
	2x320 or 8x80

	Memory (mm2)
	1.99
	40.95
	40.95

	QSN + Ctrl (mm2)
	0.55
	2.98
	10.36

	NCU (mm2)
	0.59
	2.33
	9.44

	Others (mm2)
	0.26
	0.26
	0.26

	Area in 180 nm (mm2)
	3.39
	46.52
	61.01

	Area in 14 nm (mm2)
	0.02
	0.28
	0.37

Table 4 compares the PC-Polar list decoder (L = 8) of [9] with the large-block LDPC decoder area estimate. It can be seen that using a polar decoder for short block lengths incurs a large area overhead of 65%. This is for a list size of 8, which did not have notable performance gains in most cases compared to LDPC as shown in Section 2.1.3. Increasing the list size to 32 will further increase the overhead of the polar decoder in both area and computational complexity. The N=1024 polar decoder is also 12 times as large as the N = 1944 LDPC decoder of [10].
[bookmark: _Ref466047653]Table 4 Size of an N = 1024, L = 8 PC-Polar list decoder compared to the peak-throughput, N = 40,000 LDPC decoder.
	
	PC-Polar L = 8 [9]
	Large-block LDPC

	N
	1024
	40,000

	Area in 14nm (mm2)
	0.24 (65%)
	0.37 (100%)

Observation 2: Using polar codes for short blocks incurs a larger area overhead.
Alternatively, suppose we compare a small LDPC code with a small Polar code. By applying the same scaling method to obtain an area estimate for an N = 8192 (instead of 40,000 in the previous example), and Zmax = 81, the LDPC decoder yields an area estimate of 0.06 mm2 in 14 nm technology. In contrast, the N = 8192, L = 8 decoder of [9] has an area of 0.30 mm2, which is 5 times as large as the estimate for the N = 8192 LDPC decoder.
LDPC-Only Solution
One decoder can be used to decode both short and long LDPC codes. Figure 4 shows the long-block LDPC decoder architecture, which due to the parallelism and regular structure of quasi-cyclic LDPC codes, can naturally be partitioned into several smaller partitions. The permutation network is already flexible and as discussed in Section 2.2, can support two parallel Zmax = 320 lifts and eight parallel lifts of size . The highlighted blocks are the ones involved in decoding a single small block code. Only the controller block needs to be modified to accommodate the short codes, the rest of the decoder already has enough flexibility and granularity to support any block length (up to 40,000) and any lift size (up to 320). Therefore the area overhead of decoding short block LDPC codes is confined to controller and is negligible.

[bookmark: _Ref466048926]Figure 4 Partitioned long-block LDPC decoder architecture.

Observation 3: Short LDPC codes can be decoded using the long LDPC decoder with negligible area overhead.
The other blocks, in grey in Figure 4, can be used to reduce the latency of decoding a single codeword by processing more messages in parallel. They can also be used to decode multiple short block codes in parallel to increase throughput. In the case where only one code block is available, the unused portions of the decoder, including memory, can be power-gated to save energy. This will reduce both dynamic and static energy and brings the power consumption of the long-block decoder to levels comparable to those of a dedicated short-block decoder. The power gating mechanism will already be included in the decoder to exploit the power-saving benefits of early termination [14]. Clock-gating within an active block can also be used to further save energy, for example when the lift size is smaller than the smallest partition size [15].
Observation 4: Short LDPC codes can be decoded using the long LDPC decoder in an energy efficient manner.
In light of the efficiency results presented in this contribution and the performance results presented in [16], we arrive at the following proposal:
Proposal 1: LDPC codes should be used for all block lengths in EMBB data due to their superior area and energy efficiency compared to a two-code solution.

Conclusions
Observation 1: LDPC codes have lower average computational complexity than polar codes at comparable performance levels for short block lengths.
Observation 2: Using polar codes for short blocks incurs a large area overhead.
Observation 3: Short LDPC codes can be decoded using the long LDPC decoder with negligible overhead.
Observation 4: Short LDPC codes can be decoded using the long LDPC decoder in an energy efficient manner.
 Proposal 1: LDPC codes should be used for all block lengths in EMBB data due to their superior area and energy efficiency compared to a two-code solution.
References
[1] [bookmark: _Ref466052652][bookmark: _Ref465974774]RAN1 #86bis Chairman’s Notes.
[2] [bookmark: _Ref466063765]MediaTek Inc. R1-1609336 “UE considerations on coding combination for NR data channels,” RAN1-86bis, Lisbon, Portugal, 2016.
[3] [bookmark: _Ref466063662]Darabiha et al. “Power reduction techniques for LDPC decoders,” IEEE JSSC, VOL. 43, NO. 8, 2008.
[4] [bookmark: _Ref465978965]Viens and Ryan, “A reduced-complexity box-plus decoder for LDPC codes,” Turbo Symp. 2008.
[5] Qualcomm Inc. R1-1610140, “LDPC decoding with adjusted min-sum,” RAN1-86bis, Lisbon, Portugal, 2016.
[6] [bookmark: _Ref466108417]Qualcomm Inc. R1-1612083, “Adjusted Min-Sum decoders for LDPC Codes,” RAN1-87, Reno, USA, 2016.
[7] [bookmark: _Ref466016301]Li et al., “An adaptive successive cancellation list decoder for polar codes with cyclic redundancy check,” IEEE Commun. Letters, 2012.
[8] [bookmark: _Ref466020652]Huawei and HiSilicon, R1-1608862 “Polar code construction for NR,” RAN1-86bis, Lisbon, Portugal, 2016.
[9] [bookmark: _Ref466023781]Huawei and HiSilicon, R1-1608865 “Design aspects of polar code and LDPC for NR,” RAN1-86bis, Lisbon, Portugal, 2016.
[10] [bookmark: _Ref466027830]Studer et al. “Configurable high-throughput decoder architecture for quasi-cyclic LDPC Codes,” Asilomar, 2008.
[11] [bookmark: _Ref466028027]Huawei and HiSilicon, R1-1610472 “Evaluation of adjusted min-sum LDPC and complexity aspects of permutation networks,” Lisbon, Portugal, 2016.
[12] [bookmark: _Ref466038559]Qualcomm Inc. R1-160139 “Efficient channel coding implementations for EMBB,” RAN1-86bis, Lisbon, Portugal, 2016.
[13] [bookmark: _Ref463016212]Chen et al, “QSN – a simple circular-shift network for reconfigurable quasi-cyclic LDPC decoders,” in IEEE TCAS-II, Vol 57, No. 10, Oct. 2010.
[14] [bookmark: _Ref466064052]Le Coz et al., “Comparison of 65nm LP bulk and LP PD-SOI with adaptive power gate body bias for an LDPC codec,” ISSCC, 2012.
[15] [bookmark: _Ref466064190]Park et al. “A 1.15 Gb/s fully parallel nonbinary LDPC decoder with fine-grained dynamic clock gating,” ISSC, 2013.
[16] [bookmark: _Ref466062995]Qualcomm Inc. R1-1612081 “Short block length LDPC codes,” RAN1-87, Reno, USA, 2016.

2/7
image1.png

image2.png

image3.png

image4.png

image5.png

image6.png

image7.emf
LLR RAM

Permutation Network

Node

Processors

Node

Processors

Node

Processors

Node

Processors

Check

RAM

Controller

Code

Description

LLR RAMLLR RAMLLR RAM

Check

RAM

Check

RAM

Check

RAM

oleObject1.bin
LLR RAM

Permutation Network

Node Processors

Node Processors

Node Processors

Node Processors

Check RAM

Controller

Code Description

LLR RAM

LLR RAM

LLR RAM

Check RAM

Check RAM

Check RAM

