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Introduction
LDPC codes have been proposed as a coding scheme for NR. The details of the proposed LDPC coding design can be found in [1]. LDPC codes are generally decoded with the message passing decoder based on a message-passing algorithm [10]. Message passing decoders operate by passing messages along the edges of bipartite graphs with variable nodes on one side and check nodes on the other.  The messages are processed and updated at the nodes. The messages generally represent (approximate) extrinsic log-likelihood ratios (LLR) of the bit associated to the edge that carries the message.  The message passing and updating proceeds in an iterative manner, typically until convergence to a codeword is detected or a time-out occurs. The processing rule at the variable node side typically amounts to the summation of the incoming LLRs along the edges. At the check node side, the processing rule is twofold: the sign of the outgoing message is simply the product of the incoming signs because of the parity-check sum operation; the magnitude of the outgoing LLR is determined by a more complicated operation.  
This contribution provides details on an Adjusted Min-Sum decoder, which is a simple refinement of the offset Min-Sum (OMS) and normalized Min-Sum (NMS) decoders, but achieves close to SP performance even at very low rates. This algorithm and its variants have existed in literature since 2003, although perhaps have not been as widely recognized because the typical range of code rates in LDPC standards has been medium to high coding rates, e.g., 802.11n with lowest rate of ½. For NR, a very low rate is required, and hence we propose to use a variation which improves the performance in this regime.
Sum-Product Decoding 
One of the most powerful message passing decoders, one that is optimal asymptotically in large block length, is the sum-product (SP) algorithm. At the variable node side for both the SP and MS decoder we have the following rule. Let  represent the incoming LLRs at a variable node, then the outgoing LLR along an edge is simply the sum of all the incoming LLRs excluding the LLR along the edge under consideration (message-passing principle).

At the check node side, for the SP decoder the outgoing LLR magnitude is computed as follows:


Although the above mentioned SP decoder performs well, it could poses challenges in efficient implementation. One challenge is the complexity of the transform operation, but a more basic challenge concerns memory requirements. More precisely, in many decoder architectures it is necessary to store the values of outgoing messages from the check node. Full implementation of the SP decoder would therefore involve having memory storage for each edge connected to a check node. This could result in a large storage requirement for the decoder which could be undesirable. Since the area of hardware LDPC decoders are typically dominated by memory requirements [6][7][8], it is desirable to keep the required memory low. For NR the requirements of large block lengths and low code rates virtually ensures that the memory component of the decoder will be dominant. 
Reduced Complexity LDPC Decoding
Many populate simplifications of the SP decoder involve message-passing based on min-sum approximations. Historically, the OMS and NMS have been used for decoding of LDPC codes. These have performance close to SP for medium to high rates however these decoders do not perform well at lower rates, although as mentioned earlier some existing standards for LDPC codes also do not support very low code rates. The basic adjusted min-sum (AdjMS) decoder by Jones et al [5], which is explained in the next section, was discovered more than a decade ago, back in 2003. This decoder is a simple refinement of the OMS and NMS and achieves close to SP performance even at very low rates. 
In the section we first describe the standard Min-Sum (MS) implemention, and then provide a details for a low complexity AdjMS implementation which can achieve near-SP performance. Simulation results to verification this performance are provided in the appendix.
Min-Sum Decoding
In the Min-Sum (MS) decoder the variable node processing rules remain the same as SP. At the check node side, however, the outgoing message magnitude is computed in a simpler way. 
For the MS decoder the variable node rule remains the same. At the check node side instead of the above SP equation, the magnitude of the outgoing message is given by, 

Where the minimum is over all the incoming edges except the one along the edge under consideration. Assume that the LLRs are ordered such that  is the LLR with minimum incoming magnitude LLR and the  is the second minimum incoming magnitude LLR. Then, 

and 

One of the main reasons that the MS decoder suffers from performance loss relative to SP is because the outgoing LLR magnitude are more “optimistic” than the SP outgoing LLR magnitude. Let us explain this more precisely. Consider the high SNR transmission case. In this situation, the LLRs are typically going to be of large magnitude. As a result, the outgoing message magnitude of the SP decoder is approximated well by the MS decoder outgoing messages. Indeed, if the LLR magnitude is large, then the function log(coth(|LLR|/2)) is close to 0. Hence the MS decoder is closer to SP at high SNR. Although, it has been observed that the difference from the SP decoder could still be around three or more tenths of a dB. At lower SNR values, which is typically the case when the rate is low, the log(coth(|LLR|/2)) is large in magnitude. Hence, neglecting those terms, as is done in the MS decoder, could result in large performance degradation. Indeed, at rates such as 1/5, a difference close to a dB can be observed with respect to the SP decoder. This has even been noted in past works [2][3][4]. Overall, this degradation varies with blocklengths and with rates and could be as small as a few tenths of a dB for small blocklengths to a dB or more at large blocklengths. The degradation of the MS decoder is particularly noticeable at lower rates such as ½, 1/3 and 1/5, an important rate regime for NR. 
The MS decoding performance suffers primarily because it overestimates the outgoing LLR magnitudes relative to SP, and because of the two magnitude property. To alleviate the overestimation of magnitudes the MS decoder is often modified to include an offset or a normalization value that is applied to the outgoing messages [2][3]. I.e., the outgoing message magnitude is first computed using the MS rules as mentioned above and then either a small offset (OMS) is removed from the outgoing message magnitude or the outgoing magnitude is scaled (NMS) to bring them closer to the true SP values. Even though the performance of OMS and NMS improves over MS, at lower rates it could still be around 0.4 to 0.5 dB away from the SP decoder. 
[bookmark: _Ref466066909]Adjusted Min-Sum Decoder 
We now propose to use a decoder which has the same storage complexity of the MS decoder but has the performance close to the SP decoder for all rates and blocklengths. Again, in this case the variable node updates are the same as SP.
The work of [5] describes a modified version of the MS decoder. The first point to note is that the decoder described in [5] has the same storage or memory requirement as the MS decoder, i.e., it also requires to store only two distinct outgoing LLR magnitudes per check node. The decoder computes the two outgoing message magnitudes as follows. Suppose again that the incoming LLR magnitudes are given by , with  being the minimum incoming magnitude LLR. Then, along the edge carrying the minimum incoming magnitude LLR, , (first stored message) the outgoing message is the one computed by the SP rule. And along the rest of the edges (second stored message) the outgoing message magnitude used is the one obtained by applying the SP rule to all the incoming messages, . Better performance is obtained when for the second stored message, the SP outgoing message along the maximum incoming reliability (or in other words the outgoing SP message with minimum reliability) is used instead. This decoder is a slight modification of [5] and is observed to yield better performance than the one provided in [5]. 
Hardware Implementation Complexity
A check-node output message in the SP decoding algorithms can be calculated recursively and using the input values pairwise. Here we denote this pairwise calculation the boxplus operation () and describe the complexity of its implementation in this section.
Two low-complexity methods of implementing the  operation in hardware were described in [16]: one using a compressed look-up table and a simple combinational circuit. The combinational circuit calculates , where  and  are both positive fixed-point values, according to:
1. If , swap the values of  and .
2. 
3. If 
· 
4. Else
· 

[bookmark: _GoBack]Where  is the least significant bit in . An implementation requires one comparator and three adders. The comparisons with 1 and 2, can implemented using OR gates. This is three adders more than the min-sum algorithm, and only two adders more than the offset min-sum algorithm. Therefore the increase in implementation complexity resulting from using AdjMS instead of min-sum or offset min-sum is small. This already small increase in computational-logic complexity is particularly minor in a memory-dominated design like an LDPC decoder.
Observation 1: AdjMS decoding offers significant improvement in performance for a minor increase in hardware implementation complexity compared to other min-sum decoders.
Layered Decoding Schedules
LDPC decoding also involves the schedule of decoding. Traditionally the flooding schedule is used where all check nodes are updated in parallel first and then all the variable nodes. The layered schedule has been proposed [9] which allows updated information to be used more quickly than the flooding decoder thus speeding up the decoding. In the performance results shown in the next section, we use the layered decoding schedule for the AdjMS and compare its performance with flooding SP decoder.
Performance of Adjusted Min-Sum Layered Decoders
The following observations can be made from the performance results provided in the appendix.
Observation 2: The performance of the AdjMS decoder is close to the performance of full floating point SP decoder.
1. At rate ½ the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.08 dB at K = 8000 at BLER 1e-2.
2. At rates larger than ½, there is no visible performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS with layered schedule.
3. At rate 2/5, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.1 dB at K = 8000 at BLER 1e-2. At other blocklengths it is smaller than 0.1 dB
4. At rate 1/3, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.15 dB at K = 8000 at BLER 1e-2. At other blocklengths it is smaller than 0.12 dB.
5. At rate 1/5, the max performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.25 dB at K = 8000 at BLER 1e-2. At other blocklengths it is around 0.2 dB.
6. The fixed point 6-bit AdjMS decoder with layered schedule improves on the error-floor performance of the SP decoder. E.g., for rate 0.2 and K=1000, the performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.18 dB @ BLER of 1e-2,  whereas the performance difference between full floating point SP decoder and 6-bit fixed-point AdjMS decoder with layered schedule is 0.06 dB @ BLER of 1e-4.
7. Layered schedule speeds up the decoder by almost a factor of 2 over the flooding schedule.

 Proposal 1: Adjusted Min-Sum decoding should be used for evaluation of LDPC codes in NR. Layered decoders should also be employed to speed up the decoding convergence.

Conclusions
Observation 1: AdjMS decoding offers significant improvement in performance for a minor increase in hardware implementation complexity compared to other min-sum decoders.
Observation 2: The performance of the AdjMS decoder is close to the performance of full floating point SP decoder.
 Proposal 1: Adjusted Min-Sum decoding should be used for evaluation of LDPC codes in NR. Layered decoders should also be employed to speed up the decoding convergence.
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Appendix to Performance Results
The performance of an adjusted Min-Sum decoder on the eMBB scenario set-up is shown in this section. The decoder uses only two outgoing message magnitudes per check node and hence has the same complexity as the MS decoder. The magenta curves are for the SP decoder with flooding schedule with max iterations of 50. The blue curves correspond to the AdjMS decoder with layered schedule and max iterations of 25. The data for AdjMS performance is provided in [12].
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Performance Results with practical hardware decoder 
In the previous section we demonstrated that the AdjMS decoder performs very closely to the SP decoder with the complexity of the standard MS decoder. In this section we further review the performance of a practical hardware implementable version of the AdjMS decoder. We consider fixed-point hardware implementation of the AdjMS with 6 bit magnitude LLRs. The area and the complexity of such a decoder has been provided in [13]. The curve in red is floating point SP with flooding schedule and max iterations = 50; curve in grey is floating point AdjMS with layered schedule and max iterations = 25; curve in green is fixed-point AdjMS with layered schedule and max iterations = 25.
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Performance Results on Fading Channels
The performance of the AdjMS over fading channels is also very close to the performance of the SP decoder and was reported in [14].
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R=0.67,C18_25_4000_6000_Z224

R=0.75,C25_30_4000_5333_Z160

R=0.83,C25_30_4000_4800_Z160

R=0.89,C25_30_4000_4500_Z160
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R=0.20,C27_32_6000_30000_Z224 (SP,Flood,50)

R=0.33,C27_32_6000_18000_Z224

R=0.40,C27_32_6000_15000_Z224

R=0.50,C27_32_6000_12000_Z224

R=0.67,C19_26_6000_9000_Z320

R=0.75,C27_32_6000_8000_Z224

R=0.83,C27_32_6000_7200_Z224

R=0.89,C27_32_6000_6750_Z224

R=0.20,C27_32_6000_30000_Z224 (AdjMS,Layered,25)

R=0.33,C27_32_6000_18000_Z224

R=0.40,C27_32_6000_15000_Z224

R=0.50,C27_32_6000_12000_Z224

R=0.67,C19_26_6000_9000_Z320

R=0.75,C27_32_6000_8000_Z224

R=0.83,C27_32_6000_7200_Z224

R=0.89,C27_32_6000_6750_Z224
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R=0.20,C25_30_8000_40000_Z320 (SP,Flood,50)

R=0.33,C25_30_8000_24000_Z320

R=0.40,C25_30_8000_20000_Z320

R=0.50,C25_30_8000_16000_Z320

R=0.67,C18_25_8000_12000_Z448

R=0.75,C25_30_8000_10667_Z320

R=0.83,C25_30_8000_9600_Z320

R=0.89,C25_30_8000_9000_Z320

R=0.20,C25_30_8000_40000_Z320 (AdjMS,Layered,25)

R=0.33,C25_30_8000_24000_Z320

R=0.40,C25_30_8000_20000_Z320

R=0.50,C25_30_8000_16000_Z320

R=0.67,C18_25_8000_12000_Z448

R=0.75,C25_30_8000_10667_Z320

R=0.83,C25_30_8000_9600_Z320

R=0.89,C25_30_8000_9000_Z320
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R=0.20,C9_18_100_500_Z12 (SP,Flood,50)

R=0.20,C25_30_400_2000_Z16 

R=0.20,C25_30_1000_5000_Z40

R=0.20,C25_30_2000_10000_Z80

R=0.20,C9_18_100_500_Z12 (AdjMS,Layered,25)

R=0.20,C25_30_400_2000_Z16 

R=0.20,C25_30_1000_5000_Z40

R=0.20,C25_30_2000_10000_Z80

R=0.20,C9_18_100_500_Z12 (AdjMS,6-bit,layered,25)

R=0.20,C25_30_400_2000_Z16 

R=0.20,C25_30_1000_5000_Z40

R=0.20,C25_30_2000_10000_Z80
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R=0.20,C25_30_4000_20000_Z160 (SP,Flood,50)

R=0.20,C25_30_8000_40000_Z320

R=0.20,C25_30_4000_20000_Z160 (AdjMS,Layered,25)

R=0.20,C25_30_8000_40000_Z320

R=0.20,C25_30_4000_20000_Z160 (AdjMS,6-bit,Layered,25)

R=0.20,C25_30_8000_40000_Z320
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R=0.33,C9_18_100_300_Z12 (SP,Flood,50)

R=0.33,C25_30_400_1200_Z16

R=0.33,C25_30_1000_3000_Z40

R=0.33,C25_30_2000_6000_Z80

R=0.33,C25_30_4000_12000_Z160

R=0.33,C25_30_8000_24000_Z320

R=0.33,C9_18_100_300_Z12 (AdjMS,layered,25)

R=0.33,C25_30_400_1200_Z16

R=0.33,C25_30_1000_3000_Z40

R=0.33,C25_30_2000_6000_Z80

R=0.33,C25_30_4000_12000_Z160

R=0.33,C25_30_8000_24000_Z320

R=0.33,C9_18_100_300_Z12 (AdjMS,6-bit,layered,25)

R=0.33,C25_30_400_1200_Z16

R=0.33,C25_30_1000_3000_Z40

R=0.33,C25_30_2000_6000_Z80

R=0.33,C25_30_4000_12000_Z160

R=0.33,C25_30_8000_24000_Z320
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R=0.40,C9_18_100_250_Z12 (SP,flood,50)

R=0.40,C25_30_400_1000_Z16

R=0.40,C25_30_1000_2500_Z40

R=0.40,C25_30_2000_5000_Z80

R=0.40,C25_30_4000_10000_Z160

R=0.40,C25_30_8000_20000_Z320

R=0.40,C9_18_100_250_Z12 (AdjMS,layered,25)

R=0.40,C25_30_400_1000_Z16

R=0.40,C25_30_1000_2500_Z40

R=0.40,C25_30_2000_5000_Z80

R=0.40,C25_30_4000_10000_Z160

R=0.40,C25_30_8000_20000_Z320

R=0.40,C9_18_100_250_Z12 (AdjMS4,6-bit,layered,25)

R=0.40,C25_30_400_1000_Z16

R=0.40,C25_30_1000_2500_Z40

R=0.40,C25_30_2000_5000_Z80

R=0.40,C25_30_4000_10000_Z160

R=0.40,C25_30_8000_20000_Z320
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R=0.50,C25_30_400_800_Z16 (SP,Flood,50)

R=0.50,C25_30_1000_2000_Z40

R=0.50,C25_30_2000_4000_Z80

R=0.50,C25_30_4000_8000_Z160

R=0.50,C25_30_8000_16000_Z320

R=0.50,C25_30_400_800_Z16 (AdjMS,Layered,25)

R=0.50,C25_30_1000_2000_Z40

R=0.50,C25_30_2000_4000_Z80

R=0.50,C25_30_4000_8000_Z160

R=0.50,C25_30_8000_16000_Z320

R=0.50,C25_30_400_800_Z16 (AdjMS,6-bit,Layered,25)

R=0.50,C25_30_1000_2000_Z40

R=0.50,C25_30_2000_4000_Z80

R=0.50,C25_30_4000_8000_Z160

R=0.50,C25_30_8000_16000_Z320
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R=0.83,C25_30_400_480_Z16 (SP,Flood,50)

R=0.83,C25_30_1000_1200_Z40

R=0.83,C25_30_2000_2400_Z80

R=0.83,C25_30_4000_4800_Z160

R=0.83,C25_30_8000_9600_Z320

R=0.83,C25_30_400_480_Z16 (AdjMS,Layered,25)

R=0.83,C25_30_1000_1200_Z40

R=0.83,C25_30_2000_2400_Z80

R=0.83,C25_30_4000_4800_Z160

R=0.83,C25_30_8000_9600_Z320

R=0.83,C25_30_400_480_Z16 (AdjMS,6-bit,Layered,25)

R=0.83,C25_30_1000_1200_Z40

R=0.83,C25_30_2000_2400_Z80

R=0.83,C25_30_4000_4800_Z160

R=0.83,C25_30_8000_9600_Z320
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R=0.89,C25_30_400_450_Z16 (SP,Flood,50)

R=0.89,C25_30_1000_1125_Z40

R=0.89,C25_30_2000_2250_Z80

R=0.89,C25_30_4000_4500_Z160

R=0.89,C25_30_8000_9000_Z320

R=0.89,C25_30_400_450_Z16 (AdjMS,Layered,25)

R=0.89,C25_30_1000_1125_Z40

R=0.89,C25_30_2000_2250_Z80

R=0.89,C25_30_4000_4500_Z160

R=0.89,C25_30_8000_9000_Z320

R=0.89,C25_30_400_450_Z16 (AdjMS,6-bit,Layered,25)

R=0.89,C25_30_1000_1125_Z40

R=0.89,C25_30_2000_2250_Z80

R=0.89,C25_30_4000_4500_Z160

R=0.89,C25_30_8000_9000_Z320


