

3GPP TSG RAN WG1 Meeting #87	R1-1611322
Reno, USA 14th - 18th November 2016

Source:	Ericsson
[bookmark: Title]Title:	Rate Matching for LDPC Codes
[bookmark: Source]Agenda Item:	7.1.5.1
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In RAN#86, the following agreement was made with regard to flexibility of channel coding techniques.

	Agreement:
· Channel coding techniques for NR, should support the following:
· Info block size K flexibility:
· Granularity at lower end of range of K = [D1] bits
· D1 may be different for control and data channels
· FFS whether D1 may be different for different code rates
· FFS whether the granularity is coarser at higher values of K
· Shortening (i.e. assigning info bits to known values, e.g. 0) may be used to provide info block size flexibility
· Codeword size flexibility:
· Basic code design with rate matching (i.e., puncturing and/or repetition) supports 1-bit granularity in codeword size

LDPC codes have been proposed by several companies as good channel coding candidates for NR and the design we have proposed is described in [1]. This design is based on three different rate-compatible base graphs, each designed for a certain range of information block lengths and code rates. In this contribution we describe the rate matching procedure that should be combined with the proposed set of base graphs, including selection of base graph, lifting size and possible shortening, puncturing and/or repetition.
Collection of Base Graphs and Lifting Sizes
The three different base graphs that we consider are summarized in Table 1.
[bookmark: _Ref462125875]Table 1 LDPC base graphs
	
	Kb,max
	Kb,min
	Kmax
	Kmin
	Npunc
	Ndeg1
	Rmax
	Rmin
	Z

	Base graph 1
	32
	22
	16384
	176
	2xZ bits
	2xZ bits
	8/9
	1/4
	Lift 1: 8, 12, 16, 24
Lift 2: 32, 48, 64, 96
Lift 3: 128, 192, 256, 384, 512

	Base graph 2
	10
	6
	960
	48
	2xZ bits
	Z bits
	2/3
	1/4
	Lift 1: 8, 12, 16, 24
Lift 2: 32, 48, 64, 96

	Base graph 3
	6
	4
	336
	32
	2xZ bits
	Z bits
	1/2
	1/5
	Lift 1: 8, 10, 12, 14
Lift 2: 16, 20, 24, 28
Lift 3: 32, 40, 48, 56

Rate Matching Procedure

Denote the code parameters of the desired code by Rtx and Ktx. To generate a code with the correct parameters for a specific base graph G such that Rmax >= R, find all Z_i values that give the desired K, i.e., find Z_i such that Kb,min<= K/Z_i <= Kb,max, and choose Z to be the smallest one. After selecting the lifting size Z, the following rate matching procedure is applied to ensure that the code has the desired code rate Rtx and information block length Ktx. Note that this construction allows for any combination of Kmin <= K <= Kmax and any rate Rmin <= R <= Rmax.

Denote the number of information bits of base graph G lifted with lifting size Z by K, that is, K=Z*Kb,max.
1. Shortening: Append (K - Ktx) dummy bits to the set of Ktx information bits to make an information vector U of K bits; The dummy bits are assigned a known value of ‘0’.
2. Encode the information vector U with the parity check matrix H. The encoding generates a codeword vector C of N bits;
a. Systematic encoding is used, so that the codeword vector C is composed of two set of bits: [systematic bits; parity bits]. The length-K vector of systematic bits is equal to the information vector U.
b. The length-K, K=Kb,max*Z, systematic bits are Kb,max groups of Z bits, [u0,u1, …. uz-1,| uz,uz+1, …. u2z-1,|…, u_(Kb,max-1)*Z, u_(Kb,max-1)*Z+1, …. u_(Kb,max*Z-1)].
c. The length-(N-K), M=N-K=mb*Z, parity bits are mb groups of Z bits, [p0,p1, …. pz-1,| pz,pz+1, …. p2z-1,|…, p_(mb-1)*Z, p_(mb-1)*Z+1, …. p_(mb*Z-1)].
3. Perform rate-matching on the codeword vector C in the following way: Remove the (K - Ktx) shortened bits. Produce a vector of length Ntx for transmission over the wireless channel according to the method based on a rectangular circular buffer as described below.
Rectangular Circular Buffer Method
In the following, it is assumed that [systematic bits, parity bits] as defined by the PCM is written into the rectangle shown in Figure 1 row wise, starting from upper left corner, ending at bottom right corner. After writing the bits into the rectangle it can be used either for generating a codeword of arbitrary block length Ntx, or for generating retransmissions to be used for incremental redundancy. In the first case, Ntx bits are read out from the rectangle. In the second case, for the first transmission, some bits are read out. In case of a second transmission, an additional number of bits are read out. While the read out of each retransmission may start anywhere in the rectangularly shaped circular buffer, preferably the read-out starts close to where the read out for the previous transmission ended. This can be generalized to more than one retransmission.
Figure 1 illustrates how the [systematic bits, parity bits] are read out of the rectangular circular buffer to produce the Ntx bits for transmission. Count Ntx from the rectangle and transmit them.
· If Ntx is smaller than the total number of bits in the circular buffer, then the bits left behind in the rectangle, hence not transmitted, are punctured.
· If Ntx is larger than the total number of bits in the circular buffer, then the read-out procedure wraps around and some bits in the circular buffer are repeated, leading to the repetition effect of rate matching.
· If the Ktx actual information bits are appended with (K – Ktx) bits of known value before encoding with the PCM, then shortening is performed. The (K – Ktx) shortening bits are appended to the end of the Ktx actual information bits. The shortened bits are known and carry no information, hence they should be removed before transmission.
· Some of the information bits are punctured by design. Since the code is designed with the knowledge that the first systematic bits will be punctured, these bits should not be read out from the circular buffer. The already transmitted bits should therefore be repeated rather than transmitting the first systematic bits designed to be punctured. In the figures below, these information bits are referred to as skipped bits.

In the figure below, the ‘circular buffer’ used for rate matching is presented in the rectangular format. It is understood, however, that wrapping-around when reaching the end of the rectangle means that the buffer is circular.

[bookmark: _Ref462133072]Figure 1	The systematic bits and parity bits are read out row-wise, starting at the yellow dot.

Simulation Results

In this section, we present simulation results for a large range of information block lengths. Figure 2 through Figure 4 show the Es/N0 (dB) needed to reach a block error rate (BLER) of 0.1 and 0.01 for different ranges of information block sizes. A degradation is seen when the information block length k is just slightly higher than Kmax * Zi, and the next higher lifting factor Zi+1 must be used instead together with many shortened bits. For example, in Figure 3, this can be seen for k=1032 and k=1544. The degradations may be reduced if the LDPC code is optimized for a higher number of lifting sizes Z, but that also increases the implementation complexity.
From the figures, it can be observed that the design in [1] limits the Es/N0 (dB) degradation to 0.2 dB or less, when switching between two Z values. Overall, consistent BLER performance is achieved by any two adjacent K values. This study validates the LDPC design in [1] as well as the rate matching procedure in Section 3.
[image:]
Figure 2	Performance of proposed rate-matching algorithm for 100 <= k <=500 and code rate 1/2.

[image:]
[bookmark: _Ref466025635]Figure 3	Performance of proposed rate-matching algorithm for 1000 <= k <=2000 and code rate 1/2.
[bookmark: _GoBack][image:]
[bookmark: _Ref466028464]Figure 4	Performance of proposed rate-matching algorithm for 3200 <= k <=8000 and code rate 1/2.

Based on the discussion above and the simulation results, we have the following proposal:

Observation 1 Shortening together with circular buffer rate-matching allows support for arbitrary 1-bit granularity in information block size and codeword length for LDPC codes.

1. Rate-matching based on shortening and a circular buffer should be used for LDPC codes.

Conclusion
In this contribution, we have given a scheme for rate-matching based on shortening and a circular buffer and showed by simulations that the performance is stable when the block length is varied. We have the following observation and proposal:

Observation 1 Shortening together with circular buffer rate-matching allows support for arbitrary 1-bit granularity in information block size and codeword length for LDPC codes.

1. Rate-matching based on shortening and a circular buffer should be used for LDPC codes.

References
[bookmark: _Ref462124632][bookmark: _Ref442441852][bookmark: _Ref441562466]R1-1611321, “Design of LDPC codes for NR”, Ericsson, November 2016.
R1-1608876, “LDPC Code Performance with Rate Matching,” Ericsson, October 2016.

image2.png
R:

12, QPSK

—— Targel BLER=0.01

—6— Targel BLER=0.1

35

418 1061e) uoeas o) paunbes [ap] On/°3

150 200 250 300 350 400 450 500

100

image3.png
E,/N, [4B] required to reach target BLER

16

—6— Targel BLER=0.1
—— Targel BLER=0.01

1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000

3

image4.png
P 12, QPSK

—6— Targel BLER=0.1
12 —— Targel BLER=0.01

11

1.05

E,/N, [4B] required to reach target BLER

3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000
3

image1.emf
Parity bits

Systematic bits

Systematic bits skipped

Z columns

n

b

rows

Microsoft_Visio_Drawing.vsdx
Parity bits
Systematic bits
Systematic bits skipped
Z columns
nb rows

