

3GPP TSG RAN WG1 Meeting #87	R1-1611318
Reno, USA 14th - 18th November 2016

Source:	Ericsson
[bookmark: Title]Title:	Consideration of Implementation Aspects of Polar Codes
[bookmark: Source]Agenda Item:	7.1.5.1
[bookmark: DocumentFor]Document for:	Discussion

Introduction
[bookmark: _GoBack]Channel coding is one of the most important areas in the physical layer of New Radio (NR) Access Technology due to its far-reaching impact on both system performance and equipment cost. In RAN #86bis meeting, the agreement was reached to use LDPC codes for eMBB for information block sizes > X, where X will be decided in RAN #87 meeting, and currently X is undecided, with range bits. For all other scenarios, including control channel, URLLC, and mMTC scenarios, the choice of the coding scheme is still open, and the candidates are Turbo, LDPC, Polar and Tail-biting Convolutional Codes.
In [1], a new variant of polar code, termed Parity-Check (PC) polar code, was introduced, where some frozen bit values in conventional polar codes are replaced by parity check bit values derived from information bit values. As in conventional Polar codes, the set of locations of the information bits, as well as that of the parity bits, need to be calculated (on-the-fly) for each combination of information length () and code length ().
It is also proposed in [1] that the rate matching method described [2] is to be used in conjunction with this new variant of polar codes when calculating the set of information bits and the set of parity bit locations for the given combination of and .
In addition, in order to reduce the latency of the PC Polar codes, it was proposed in [1] to divide a block of coded bits into two or more sub-blocks or segments of the same length, so that parallel decoding of all segments can be carried out in parallel with duplicate hardware. This scheme is alternatively termed chained, concatenated, or segmented Polar code [1]. To avoid confusion with concatenated coding, we refer to this scheme as segmented Polar code in this contribution.
In this contribution, we examine some properties and implementation issues of these different variants of Polar codes.
Polar Decoding in General
In this section, we discuss polar decoding in general. This reflects the fundamental issues shared by the numerous variations of Polar code design.
High Latency
Polar decoder is serial in nature and incurs longer latency than even turbo code. For a possibly punctured Polar code of block length , a successive cancellation (SC) or a successive cancellation list (SCL) [4] decoder has to traverse serially through every non-root node of a decoding tree [5] of depth in order to combine the necessary log-likelihood ratios (LLRs). This alone requires at least clock cycles, regardless of the amount of hardware, where is the mother code length. Although simplified successive cancellation (SSC) techniques [6] may be adopted to reduce the latency for specific information/frozen sets, their effectiveness varies with these sets, and the worst-case latency cannot be reduced. Moreover, a slight increase in information block size for a fixed code rate or a small reduction in coding rate for a fixed can lead to doubling of latency since the exponent of is quantized. For example, for information bits, a decrease in coding rate from to can lead to an increase in the clock cycles of (2 × 4096 – 2) = 8190 cycles to (2 × 8192 – 2) = 16390 cycles.
There is no equivalent of windowing technique for Polar. In contrast, while turbo code is serial in nature, windowing technique can be used to achieve high parallelism. Chained segmented Polar codes proposed in [1] is an attempt to achieve latency reduction. However, this design totally changes the code construction, and it is not merely a change in decoding methods. In contrast, windowing technique often used in turbo decoding does not change the code construction. In addition, the level of parallelism introduced by segmentation illustrated in [1] is only on the second order of parallelism, which is far from the high level of parallelism available to Turbo and LDPC. A higher level of parallelism can only be achieved with higher number of segmentation at expense of higher decoding complexity and inferior performance. Hence in RAN1#86bis Observations, Turbo and LDPC are called “highly parallelizable”, while Polar codes are called “not highly parallelizable”.
List Decoding
List decoding is an effective method to improve decoding performance, and allows Polar decoder performance to approach that of ML decoding. List decoding can be applied to many code types, including Reed-Mueller, Polar codes, turbo codes, etc.
On the other hand, Polar list decoding is considered very complex and inefficient for hardware implementation. For NR, this is further compounded by the need of supporting arbitrary info bit and frozen bit locations for every possible combination of information block size K and code block size N. The best known list decoder has comparable efficiency to turbo decoder if using list size L= 2 or 4. If assuming Polar decoder with L=2 or 4, Polar code is expected to have worse BLER performance than turbo and LDPC. Polar list decoder has worse hardware efficiency than turbo decoder if using larger list size (L=8, 16, 32) to achieve better BLER performance [7][8].
Lack of Early Stopping Solution
Polar decoder does not have an early stopping solution. In contrast, both turbo decoder and LDPC decoder have stopping rules to stop the iteration early, if the correct codeword is found. As mentioned above, a Polar decoder needs to go through each information and frozen bit one at a time regardless of the list size of the decoder. Multi-pass decoding may be applied with a small initial list size (e.g.), but this further increases the worst-case latency.
LLR Output for Advanced Receiver
LLR output for coded bits are often required in advanced receiver processing, such as iterative demodulation and decoding, successive interference cancellation (SIC) MIMO receivers, etc. Polar decoder does not have an easy way to generate LLR output for coded bits for iterative processing like SIC receiver. Generation of LLR output for coded bits from a Polar decoder requires additional hardware and incurs higher latency.

Observation 1 Decoding in Polar code is serial in nature and is not highly parallelizable as Turbo and LDPC codes.
Observation 2 Polar code does not have inherent support for soft code-bit generation. An increase in hardware complexity and latency is needed to provide such support.

Calculation of Information-bit Set and Parity-bit Set
[bookmark: _Ref462125875]In this section, we examine proposed method [1] of calculating information-bit set and parity-bit set of the PC Polar code for each combination of information length () and code length ().
Similar to the CRC-checked polar code [4], the PC Polar code can be viewed as the concatenation of an inner conventional Polar code and an outer block code. However, they differ in that the parity check bit values of PC Polar codes are constrained to depend only on previous information bits in order to facilitate the operations of a popular class of Polar decoders, namely the successively cancellation list (SCL) decoders [4]. As in conventional Polar codes, the set of locations of the information bits, as well as that of the parity bits, need to be calculated on-the-fly[footnoteRef:1] for each combination of information length () and code length (). [1: The alternative of comprehensively storing all sets of information bit locations for all possible combinations of and is prohibitive.]

It is proposed [1] that the rate matching method described [2] is to be used in conjunction with this new variant of polar codes when calculating the set of information bits and the set of parity bit locations for the given combination
of and . In this combined scheme, the following steps need to be taken sequentially.
1. Select bits to be punctured for the rate matching
· A WHILE/FOR loop with steps
2. Identify most reliable non-punctured positions and determine their minimum row weight along with the number of positions with such minimum row weight [Need results from Step 1]
· A WHILE/FOR loop with minimum of steps and maximum of steps
· This assumes a table for the row weight distribution (i.e. number of bits per row weight) is pre-computed and stored; otherwise additional loops are needed to find such distribution.
3. “Flag” bits to be set as either PC-frozen or frozen bits [Need results from Step 2]
· A WHILE/FOR loop of size .
· This assumes the bit indices corresponding to each possible row weight are tabulated and stored; otherwise additional loops are needed to find the bit indices of a certain weight.
4. Determine information bit locations [Need results from Step 1 and 3]
· A WHILE/FOR loop with minimum of steps and maximum of steps
5. Select additional PC-frozen bit locations [Need results from Step 1, 3, and 4]
· A WHILE/FOR loop with minimum of 0 step and maximum steps[footnoteRef:2] [2: The maximum number of steps here comes from the fact that there are bit indices with row weight for a Polar code of code block length , and the largest possible value of is .]

· This assumes the bit indices corresponding to each possible row weight are tabulated and stored; otherwise additional loops are needed to find the bit indices of a certain weight.
Listed below are some observations concerning this procedure of determining information bit locations.
· This procedure as described in [1] for determining the punctured-bit set, PC-frozen-bit set, frozen-bit set, and information-bit set is serial in nature. It requires 5 WHILE/FOR loops. Since the subsequent loop(s) relies on outcome of previous loop(s), these loops cannot be done in a parallel manner. As shown, this procedure takes at a minimum of about steps and at a maximum of about steps. Note that this bit-position determination procedure has to be performed at the encoder as well as the decoder, in addition to the Arikan encoding and decoding procedure. Thus it is expected to increase the encoding and decoding latency. The exact latency increase depends on how much the processing within each individual step with these WHILE/FOR loops can be parallelized. This can be of particular concern for decoding downlink control channels as a large number of blind detections with different possible combinations of and needs to be performed.
· For a given target code length and an associated puncturing pattern, the information sets of two different information length, and , may not be nested (i.e. one is not a subset of the other). This is because different information lengths can lead to different minimum distances determined by Step 2 in the above procedure, which can in turn lead to different “flagged” bit locations and thus information sets. This is unlike the procedure proposed earlier in [2] where information sets of different sizes for the same code length must be nested. Despite its improved performance, PC Polar codes seem to have lost the nested property of information sets of different sizes.
· Since the information bit locations are selected after puncturing, for the same target information size and mother code length , the information sets obtained for two nested puncturing patterns may be different.
Observation 3 The procedure of determining an information set for PC Polar codes (as described in [1]) requires multiple sequential processing steps, leading to latency increase in both the encoder and decoder.
Observation 4 For the same code length, information sets of different sizes generated for PC Polar codes are not guaranteed to satisfy the nested property.
Due to Observation above, it is unclear if there is any structure in the information sets obtained by the proposed procedure that can be exploited to simplify decoder implementation. Consequently, we expect that a decoder for PC Polar code must be fully flexible enough to support arbitrary information sets.
Chained / Segmented Polar Code
In order to reduce the latency of the PC Polar codes, it was proposed in [1] to divide a block of coded bits into two or more sub-blocks or segments of the same length, so that parallel decoding of all segments can be carried out in parallel with duplicate hardware. This scheme is referred to as the segmented Polar code [1] in this section.
[image:]
[bookmark: _Ref462219319]Figure 1 Segmented PC Polar code with two segments

In this scheme, each segment contains both self PC bits and cross PC bits. The self PC bits are normal PC bits that depends on the information bits within the segment. The cross PC bits are determined by both the information bits within the segment and those of another segment(s), as illustrated in Figure 1. According to [1], the decoders of different segments operates independently as an individual PC Polar codes except at cross PC bits where information is exchanged between segments. In this section, we examine different aspects of this segmented Polar code.

Flexibility
Segmented Polar codes provide limited flexibility in information length and code length .
First, in order to facilitate parallel decoder architecture, the code length must be limited to an integer multiple of , the code length of each segment, for some integer . The flexibility in code length improves only through decreasing . However, decreasing reduces the achievable coding gain and thus degrades performance. Therefore, must be selected high enough to satisfy performance targets.
Second, in order to facilitate synchronized, parallel decoding architecture, the processing (calculation, sorting, pruning, etc.) at cross PC bits must be aligned in different segments. This implies that the numbers of cross PC bits must be the same for all segments.
Third, to avoid any of the segments to become the performance bottleneck, the coding rate in each segment must be identical to those of others. As a result, the numbers of information bits must be the same in all segments. Based on the procedure of determining self PC bits described in [1] and above, the numbers of PC bits in all segments must also be the same. This implies that the overall information length and the total number of PC bits must be divisible by the number of segment . This is an unacceptable restriction in many NR use cases, such as eMBB, control channel, and URLLC.

Observation 5 The number of information bits, the number of PC parity bits, and the number of coded bits of a segmented PC Polar code must be divisible by the number of segments.
Performance
As the code length is divided into segments of smaller length, the decisions on each information bit within each segment cannot fully benefit from all code bits across different segments, and the effective minimum distance between two nearest codewords is limited by the code dimension in each individual segment. As a result, the block error performance is limited by the code length of individual segment and is inferior to the performance achievable by joint decoding of the entire block of code bits. While this effect can be ignored when the code sizes are very large, the performance degradation has to be accounted for when the code sizes is small, e.g., for the range K<=1024 bis.

Observation 6 Performance of a segmented Polar code is limited by the code length of each individual segment.

Implementation
As described in [1], the decoders of different segments extend the paths in their respective lists and compute the corresponding path metrics independently at information bit locations, self PC bit locations, and frozen bit locations. However, at cross PC bit locations, information is exchanged in order to eliminate paths that violate the cross PC bit values. Since there are possible paths in the decoder of each segment, there are possible combinations of paths that need to be examined at each cross PC bit locations, where denotes the number of coupled segments. These combinations must be trimmed to combinations or less with the best combined metrics in order to maintain a list of or less surviving paths at each decoder. This requires a sorting of complexity , which is considerably higher than the computational complexity at other non-cross PC bits. Such non-uniformity in computational load often leads to some hardware components to be idle while waiting for the more computational intensive operations to be completed in other components. This can make efficient pipelining more challenging and reduce the overall data throughput as a result.

Observation 7 The decoding complexity of a segmented Polar code at cross PC bits can be much higher than that at self PC bits.

Conclusion
In this contribution, we examine some properties and implementation issues of these different variants of Polar codes. We made the following observations:

Observation 1 Decoding in Polar code is serial in nature and is not highly parallelizable as Turbo and LDPC codes.
Observation 2 Polar code does not have inherent support for soft code-bit generation. An increase in hardware complexity and latency is needed to provide such support.
Observation 3 The procedure of determining an information set for PC Polar codes (as described in [1]) requires multiple sequential processing steps, leading to latency increase in both the encoder and decoder.
Observation 4 For the same code length, information sets of different sizes generated for PC Polar codes are not guaranteed to satisfy the nested property.
Observation 5 The number of information bits, the number of PC parity bits, and the number of coded bits of a segmented PC Polar code must be divisible by the number of segments.
Observation 6 Performance of a segmented Polar code is limited by the code length of each individual segment.
Observation 7 The decoding complexity of a segmented Polar code at cross PC bits can be much higher than that at self PC bits.

Based on these observations and the above discussion, we have the following proposals:

1. Polar code is not adopted in use cases where low latency is important.
1. Polar code is not adopted in use cases where high flexibility in information and code length selection is important.
1. Segmented Polar code is not adopted in use cases where high flexibility in information and code length selection is important.

References
[bookmark: _Ref465699412][bookmark: _Ref442441852][bookmark: _Ref441562466][bookmark: _Ref462124632]R1-1608862, “Polar code construction for NR”, Huawei, HiSilicon, October 2016.
[bookmark: _Ref462486095]R1-167209, “Polar code design and rate matching”, Huawei, HiSilicon, August 2016.
[bookmark: _Ref463036293]R1-1608865, “Design aspects of Polar code and LDPC for NR,” Huawei, HiSilicon, October 2016.
[bookmark: _Ref465850291]I. Tal and A. Vardy, “List Decoding of Polar Codes,” IEEE Trans. Information Theory, vol. 61, No. 5, pp. 2213-2226, May 2015.
[bookmark: _Ref466022883]A. Alamdar-Yardi and F.R. Kschischang, “A Simplified Successive-Cancellation Decoder for Polar Codes,” IEEE Commun. Letters, vol. 6, no. 12, Dec. 2011.
[bookmark: _Ref466022828]G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W.J. Gross, “Fast list decoders for polar codes,” IEEE JSAC, vol. 34, No. 2, Feb. 2016.
R1-1608977, “On the maturity of polar decoders, based on a survey of over 150 hardware implementations,” AccelerComm Ltd.
R1-1608878, “Updated Survey of Channel Coding Implementations	,” Ericsson.

image1.emf
++++++++++Cross PC bitsInfo bitsSegment 1Segment 2

