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Introduction
At the 3GPP TSG RAN #71 meeting, the Study Item of “Study on New Radio Access Technology " was approved [1]. And, at 3GPP TSG RAN #84 meeting to #86b meeting, the LDPC code scheme was presented by many companies and was agreed as channel coding for NR system at #86b meeting. 
In RAN1#85 meeting, some LDPC code schemes were presented [2 - 6] and some basic consensus on LDPC code was agreed. At RAN1#86b, LDPC code was agreed as channel coding scheme for eMBB data at least for information block size > X, wherein, 128 <= X <= 1024 bits. It is generally observed that LDPC has lower complexity and higher throughput with similar or better performance as turbo code. A uniform base matrix with very low code rate (1/5) was shown in [4] and [5] which can support IR-HARQ scheme. In [2], a code rate of 1/3 for LDPC base matrix was presented. Extended methods were mentioned by [3] and [6] to support IR-HARQ. Row-orthogonal property of LDPC codes was presented by [5] for high data throughput. 
In this contribution, some considerations for LDPC codes design, as well as the LDPC codes with flexibility of code block sizes, code rates and IR-HARQ are presented. 
Low Density Parity Check (LDPC) Codes 
A LDPC code is defined by a sparse parity check matrix, which can be mapped to a bipartite or tanner graph composed of check nodes and variable nodes, as shown in Figure 1. 
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[bookmark: _Toc170195237][bookmark: _Toc170195507][bookmark: _Toc170195776][bookmark: _Toc170196045][bookmark: _Toc170196315][bookmark: _Toc170196585][bookmark: _Toc170196855][bookmark: _Toc170197125][bookmark: _Toc170197573][bookmark: _Toc170197899][bookmark: _Toc170198452]QC-LDPC Code
















The (Quasi-Cyclic) QC-LDPC code is defined by a base matrix  of size , an expanding factor (lift size) Z and a permutation matrix  of size . The size of information bits is , , the size of codeword is , and the code rate is .  If each element  in the base matrix  is replaced by zero sub-block matrix of size  or the sub-block matrix  , the parity check matrix of QC-LDPC can be obtained. The base matrix ,  parity check matrix  and the permutation matrix  are shown in Figure 2.  


        





Figure 2 Base Matrix (), Parity Check Matrix () and Permutation Matrix () of QC-LDPC Code










Wherein, if  in base matrix,   in  equals a zero matrix of size ; otherwise,  equals a permutation matrix  to  power. The base matrix () can be divided into 2 parts: systematic part and parity part which are illustrated in Figure 3. The systematic part includes  columns (also known as systematic columns) and parity part includes  columns (also known as parity columns). 


Figure 3 Example of Base Matrix of Systematic Part and Parity Part
QC-LDPC code has been used widely in high-throughput systems, such as IEEE802.11n, IEEE802.16e and IEEE802.11ad. It is observed that, LDPC codes are very suitable for high-throughput and low-latency system.
LDPC Code Design Considerations
In previous RAN1 meetings, it has been agreed that channel coding scheme for NR must support flexible code block size and code rate and incremental redundancy HARQ. 
1. Uniform Base Matrix
Uniform base matrix means that code base matrix is derived from a uniform base matrix for any code block size or code rate. A sub-base matrix of corresponding number of rows and columns is extracted from the uniform base matrix to support different code rates. The expanding factor (lift size) can be changed to support different code block sizes. An example for code rates of Ri and Rj is shown in Figure 4. An example of different expanding factor (lift size) (Zs and Zt) is also shown in Figure 4. 


Figure 4 Uniform Base Matrix for different Code Rates (Rj<Ri) and different Code Block Sizes (Zs<Zt)
The advantages of uniform base matrix are described as following. 
· Simplicity. Designing multiple LDPC base matrices for each code block size and/or code rate, will for sure bring certain extra complexity for LDPC code design. 
· Uniform Decoder. Since the uniform base matrix has a fixed number of rows and columns, a codeword for any code rate or retransmission may be decoded with the same decoder. 
· Less Storage. Only a uniform base matrix is stored instead of multiple LDPC base matrices for each code block size and/or code rate. 
· Easy to achieve flexible code rate. Since the uniform base matrix can support very low initial code rate, the extracting operation for sub-base matrix (puncturing bits off initial codeword) can provide any continuous code rates larger than initial rate of uniform base matrix. 
· Easy to achieve IR-HARQ. In IR-HARQ scheme, if the first transmitted data block with high rate is received incorrectly, more coded parity bits will be retransmitted for better performance (coding gain) of lower code rate. Since the initial code for uniform base matrix has many coded parity bits, it is very easy and suitable to support IR-HARQ. 
Proposal 1: Uniform base matrix should be considered for LDPC code design.
2. Base Matrix Size 
The number of total columns in the base matrix is proportional to systematic columns (kb) and inversely proportional to code rate (R), expressed as nb=kb/R.  For example, the number of total columns will be 3 or 5 times as kb and the number of parity columns (or number of rows) will be 2 or 4 times as kb when the code rate (R) equals 1/3 or 1/5. The more columns in a base matrix, the more likely it will have large average row weight (average number of non -1 for all rows). And, the large average row weight will lead to high decoder complexity [7] and high decoding latency in parity node updating [7]. 
If the number of total columns is larger, the number of total rows will be larger for the same code rate. And, large number of total rows will increase the number of layers in layered decoder which will lead to high decoder latency [7], such as row-parallel decoder. Although the number of total rows can be reduced by decreasing the systematic columns (kb) for low code rate, it may destroy the unity of base matrix. 

The LDPC code information size is proportional to the number of systematic columns (kb) and expanding factor (lift size) (Z), shown as: . The granularity of code block sizes will be large when kb is a big value for large size of base matrix. Therefore, the small size of base matrix (or small value of kb) is preferred. 
Proposal 2: LDPC code base matrix should have small size.
3. Different Code Block Size 
As discussed above, flexible LDPC information size can be supported by changing the expanding factor (lift size) (Z). However, the expanding factor (lift size) should not change continuously (the gap equals 1), leading to the granularity of information sizes may be a little large. And, for layered decoder, the expanding factor (lift size) (Z) should equal to an integral multiple of decoder parallelism when the decoder parallelism is less than Z. For example, it equals to a prime integral multiple of 2a, which will have more positive integer factors for parallelism choice, where a is a positive integer. Therefore, both scaling expanding factor (lift size) and shortening encoding (padding operation) are used for flexibility of LDPC code block size. 
Observation 1: Flexible code block size for LDPC can be achieved by combining the scaling expanding factor (lift size) and padding operation.
4. Structure of Parity Part
The parity part in the base matrix can be designed for two structures: low triangular structure and double diagonal structure. The low triangular structure for base matrix was used in IEEE802.11adand the double diagonal structure was used in IEEE802.16e and IEEE802.11n. According to our simulations, it shows that two structures have almost the same performances. The encoder may have lower complexity for low triangular structure. Thus low triangular structure is considered in LDPC uniform base matrix design in this contribution. 
5. Different Code Rates 
According to the LDPC encoding principle, the code rate can be calculated as 

                                                                              


where is the number of  systematic columns of LDPC base matrix,  is the number of parity columns of LDPC base matrix. Therefore, the code rate can be changed with some flexibly with different number of parity columns for base matrix. For a finer granularity, puncturing can be used. 
Observation 2: The LDPC code rates can be very flexible with different number of parity columns of LDPC base matrix and puncturing operation. 
Proposal 2: LDPC code design should support flexibility of code rate and code block size. 

6. Elements in Base Matrix
In the LDPC decoder, each element (non -1) in the base matrix corresponds to a cyclic shift. The value of element equals ‘0’, which means that there is no need for cyclic shift. Therefore, the more of ‘0’ elements in the base matrix, the lower complexity of LDPC decoder. For any column in base matrix, the first non -1 element is equal to ‘0’. The design may have much greater potential to optimize the decoder in future.
LDPC Base Matrix 
According to the design considerations described above, a uniform base matrix for eMBB is shown in Figure 5 (in Appendix as well) with the max expanding factor of 1024. The parameters of this uniform base matrix are: nb=26, mb=18, kb=8. Note this is mainly an illustration of LDPC for simulation and evaluation, other LDPC uniform base matrix design can also be obtained following the principles and considerations discussed above. 


Figure 5 Uniform Base Matrix with Max Expanding Factor of 1024.
LDPC Encoding Process 
There are three steps to encode K information bits into a codeblock of length N: 1. Choosing coding expanding factor and coding base matrix; 2. LDPC encoding and 3. bit selection as illustrated in Figure 6. Note that, if the size of information bits K is larger than 8192(1024*8 for our proposed base matrix), segmentation is required to encode into multiple code blocks.
1. Choosing coding expanding factor and base matrix . 







For friendly decoder with more parallelism value, the expanding factor with more integer factorization is preferable, such as satisfying an expression as . For example, the values of is , and the values of  is . The set of expanding factors is shown asZset = [4   6   8  10  12  14  16  20  24  28  32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 640 768 896 1024]. For information size of K bits, the coding expanding factor Z is chosen to be the first element in Zset larger or equal to , wherein . Then the elements of coding base matrix are modified by coding expanding factor Z as the following:


2. LDPC Encoding. 




padding bits are inserted into the information bits starting from the th bit. padded bits are encoded into codeword of bits using the coding base matrix and coding expanding factor calculated above. 
3. Bit Selection. 

Permutation is performed to reorder the coded bits in the order of importance. This is to ensure puncturing will not puncture bits with high importance. For the base matrix in Figure 5, a permutation vector PV=[ 2,3,4,5,6,7,8,11,12,9,1013,14,15,16,17,18,19,20,21,22,23,24,25,0,1 ] can be considered to shift columns of Z bits. , k=0, 1, …, nb*Z-1, where A is the original sequence and B is the shifted sequence. Bit selection is performed as the following to obtain codeword C.




wherein “null” is padded bit. In other words, code block of length N is chosen starting from the  bit where  systematic bit is not transmitted for code rate larger than 1/3. The process of LDPC encoding and bit selection are shown in Figure 6. 


Figure 6 the process of LDPC encoding and bit selection
Accordingly, the number of actually used rows and columns of the base matrix in the decoder can be calculated as 

rows： 

columns：.
Figure 7 gives an example of LDPC base matrix for LDPC decoding with K=4096 and N=4608 with code rate of 8/9, where coding expanding factor Z=512, mb=4, and nb=12.
The performance of proposed LDPC base matrix is simulated and compared with LTE Turbo code. Table 1 lists the simulation parameters and BLER curves are shown in Figure 8. It is observed that the proposed LDPC code supports full flexibility as LTE Turbo code and has better performance than LTE Turbo code for high throughput scenario (with high code rate and large block length).


Figure 7 Example of LDPC Base Matrix for LDPC Decoding with K=4096 and N=4608
Table 1 Evaluate the block error rate (BLER) performance versus SNR for eMBB
	Channel
	AWGN

	Modulation
	QPSK

	Coding Scheme
	  Turbo
	LDPC

	Decoding algorithm
	Max-log-MAP
	Layered BP

	Max Iterations
	8
	25
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Figure 8 Performances for LDPC and Turbo Codes
IR HARQ
For energy-efficient data transmission, it is necessary to support incremental redundancy (IR) for retransmission.  For IR HARQ, extra parity bits are retransmitted to get coding gain for lower code rate. In Figure 9, an IR HARQ scheme for LDPC codes is depicted for different retransmissions. In the 1st transmission, the high rate LDPC code is transmitted, and the decoder operates on small size of base matrix. If the decoding fails, the 2nd transmission data is transmitted which allows the decoder to operate on a bigger base matrix with low rate and to achieve successful decoding.. The 1st transmission has the smallest base matrix, whose decoding latency is low and throughput is high. The decoding latency for other retransmissions may increase successively. However, compared with system HARQ latency, the decoding latency of retransmission may be negligible. The normalized throughput performances of HARQ for LDPC and turbo (LTE) are shown in Figure 10. 


Figure 9 Example of IR-HARQ for LDPC
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Figure 10 the normalized Throughput of HARQ for LDPC Code and Turbo Code
Observation 3: LDPC can support IR-HARQ and achieves better normalized throughput than LTE turbo.
Proposal 3: LDPC code design should support IR HARQ.
In order to enhance the data transmission performance, the high priority bits in data transmission (after bit selection) are mapped at high reliable bit position of constellation symbols and less priority bits are mapped at less reliable bit position. It means that the higher priority bits should be transmitted at low SNR channels with more protection, which can improve the decoding performance. Therefore, it needs a constellation interleaver to rearrange the selected coded block bits before the constellation mapping. According to the property of LDPC coding, the high priority bits are those who participate in more parity check (or have heavier weight) in the parity check matrix (PCM). 

Conclusion
In this contribution, some considerations of LDPC coding schemes for the new RAT are presented. In summary, we have the following proposals and observations:
Proposal 1: Uniform base matrix should be considered for LDPC code design.
Proposal 2: LDPC code design should support flexibility of code rate and code block size. 
Proposal 3: LDPC code design should support IR HARQ.
Observation 1: Flexible code block size for LDPC can be achieved by combining the scaling expanding factor (lift size) and padding operation.
Observation 2: The LDPC code rates can be very flexible with different number of parity columns of LDPC base matrix and puncturing operation. 
Observation 3: LDPC can support IR-HARQ and achieve better normalized throughput than LTE turbo.
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Appendix 
Uniformed Base Matrix for Max Expanding Factor of 1024: 
   0   0   0   0   0   0   0   0   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 913  -1  -1 993 566  -1 241   1 810   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 1001 322 263 541 406 968 750   2  -1 391  0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1 829 936 420  -1 730  -1   2  -1  -1 322   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 931  -1  -1 592 289  -1   1  -1  -1  -1  -1 866   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
  -1 317   2  -1 983  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 877 840 476  -1  -1 711  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 310  -1  -1  48  -1 568 882  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1
 809 241   2  -1  -1  -1  -1  -1 392  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1  -1  -1
 758   1  -1  -1  -1  -1  -1  -1  -1 379  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1  -1
 240  -1  -1  -1   1  -1  -1  -1  -1  -1 576  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1  -1
 136 559  -1  -1  -1 638  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1  -1
  98 724  -1  -1  -1  -1   2  -1  -1  -1  -1  -1 984  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1  -1
  -1 909 483  -1  -1  -1  -1 169  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1  -1
 893  -1 667  -1  -1   1  -1  -1  -1  -1  -1 584  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1  -1
 835   1  -1  -1  -1  -1  -1 561  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  -1  -1
  -1 215  -1  -1   1  -1  -1  -1 526  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0  -1
 413 498  -1  -1  -1  -1   1  -1  -1 180  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1  -1   0


Expanding Factors: 
[ 4   6   8  10  12  14  16  20  24  28  32  40  48  56  64  80  96 112 128 160 192 224 256 320 384 448 512 640 768 896 1024 ]

Performance (BLER vs SNR in dB) of LDPC & Turbo :
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Figure A1 Performance Results (BLER vs SNR): 96, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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Figure A2 Performance Results (BLER vs SNR): 448, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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Figure A3 Performance Results (BLER vs SNR): 1024, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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Figure A4 Performance Results (BLER vs SNR): 2048, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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Figure A5 Performance Results (BLER vs SNR): 4096, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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Figure A6 Performance Results (BLER vs SNR): 6144, eMBB QPSK (Blue = LTE Turbo; Red = Proposed LDPC code)
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