	
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]3GPP TSG RAN WG1 #86	R1-167889
Gothenburg, Sweden, 22th – 26th Aug. 2016
[bookmark: Source]Agenda item:	8.1.4.1
Source: 	Samsung
Title: 	Design of Flexible LDPC Codes
[bookmark: DocumentFor]Document for:	Discussion and Decision
Introduction
In the RAN1 #85 meeting, it was agreed that companies providing evaluations or proposals for LDPC codes are encouraged to show how; 1) Multiple code rates and multiple code sizes would be supported, 2) Suitable granularity of information block size and code rate would be supported, 3) To support HARQ with/without IR [1].
In [2], [3], Samsung proposed a quasi-cyclic (QC) LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. Furthermore, Samsung conduct the simulation for evaluating the performance of the proposed QC LDPC code in [4].
In this contribution, we present the parity-check matrix of the proposed code and introduce a detailed lifting, shortening and puncturing method.
Flexible LDPC Codes Based on Lifting and Shortening/Puncturing
1
2
Quasi-cyclic LDPC codes
Let be the matrix given by

where are exponent indices of permutation matrices, and are the numbers of column and row blocks, respectively. is just the circulant permutation matrix which shifts the identity matrix to the right by times for any integer , . For simple notation, we denote the zero matrix by. When has full rank, we can assign information bits to some column blocks. (For our convenience, we call these column blocks information column blocks). Then the code with is referred to as a QC LDPC code. Furthermore, let be the expoment matrix of given by

An example of a parity-check matrix for a QC LDPC code with and is given by

Proposed structure
The structure of the proposed QC LDPC code is depicted in Figure 1. The proposed code can be regarded as a QC LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. The more single parity-check codes are concatenated, the lower rate QC LDPC codes can be obtained. Furthermore, the structure of single parity-check (SPC) extension from the higher rate code could be a good candidate to support IR-HARQ since the SPC extension makes it possible to create additional parity bits as much as needed. Note that when puncturing of single parity-check bits (so called degree-1 parity bits) to obtain a high code rate, the punctured parity bits are completely ignored in the LDPC decoder.
[image:]
Figure 1. Structure of proposed QC LDPC code
Lifting method
When adjusting the size of circulant permutation matrices according to the target code block size, each exponent indices can be easily calculated by the specified formula. For example, we can obtain the exponent matrix for the parity-check matrix from the exponent matrix for the parity-check matrix as follows:
[Lifting]

Here, is the parity-check matrix consisting of circulant permutation matrices and/or zero matrices for given integer and is an integer function of and .
We propose the lifting function as follows:

where means a modulo operation . Note that for , the exponent matrices have exactly the same integer entries. Therefore, if , a given exponent matrix for can create exponent matrices corresponding to parity-check matrices.
[image:]
Figure 2. Lifting technique for length compatibility
Shortening
If the information block size is after the segmentation of transport block, we first apply the proposed lifting to a given exponent matrix with submatrices in Section 2.2. Here, is the least positive integer satisfying , i.e., is the positive integer such that . Then, we can derive the parity-check matrix for the QC LDPC code from the exponent matrix by -lifting. As described in Figure 3, zeros are inserted to () bits for shortening and they are not transmitted, which is also known to the receiver. Note that since due to the minimality for the choice of , the maximum shortening size is .
In this contribution, for our convenience, we assume that the shortening is applied to the last () information bits, as depicted in Figure 3.
[image:]
Figure 3. Concept of shortening LDPC codes

Puncturing and Repetition
Rate-matching can be simply implemented in the same manner as LTE standard. First, the information block is shortened to fit the number of information size and then the puncturing is applied to some information or parity bits to support variable code rates, as described in Figure 4.
[image:]
Figure 4. Concept of rate-matching process
Note that the parity puncturing is sequentially applied from the last parity bits in reverse order.
To support code rate lower than a given LDPC code, we apply repetition. The repetition is applied as described in Figure 4.

[bookmark: _GoBack]Observation 1: QC LDPC codes constructed by the lifting, shortening and puncturing support variable code rates efficiently.
Proposal 1: To support the rate-compatibility of QC LDPC codes comparable to that of turbo code, the lifting, shortening, and puncturing techniques should be adopted.

References
[1] R1-164813, "Chairman’s note," 3GPP TSG RAN WG1 #85, Nanjing, China, May 23-25, 2016.
[2] R1-166769, Samsung, "Discussion on Length-Compatible Quasi-Cyclic LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[3] R1-166770, Samsung, "Discussion on Rate-Compatible Quasi-Cyclic LDPC Codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.
[4] R1-164812, Samsung, "Preliminary evaluation results on Quasi-Cyclic LDPC codes," 3GPP TSG RAN WG1 #86, Gothenburg, Sweden, 22-26 Aug. 2016.

Appendix: Example of Parity-Check Matrix
3
4

- , , : 98, 66, 32
- Maximum variable and check degrees: 15, 19
- No. of layers: 16
- The information bits corresponding to the first two column blocks are always punctured.
- Lifting function:

- The code rate can be defined by

where is the number of parity bits to be punctured.

※ Please refer to the excel sheet attached separately.
[image:]

image2.emf
P

a33

P

a34

P

a3(n-

1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

00P

a3

I

......I......

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2(n-1)

P

a2n

.

.

.

.

.

.

P

am1

P

am2

. . .

. . .

Z

3

Z

1

L

2

Z

1

Lifting

One parity check matrix to support variable code length

P

a11

P

a12

P

a13

P

a14

P

a1(n-1)

P

a1n

P

a21

P

a22

.

.

.

.

.

.

P

am1

P

am2

. . .

P

am(n-

1)

P

amn

P

x

0P

am

...0

P

a33

P

a34

P

a3(n-1)

P

a3n

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

P

y

00P

a3

I

......I......

P

a11

P

a12

P

a13

P

a14

P

a1n

P

a21

P

a22

P

a23

P

a24

P

a2n

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

P

am1

P

am2

P

am3

P

am4

P

amn

. . .

. . .

. . .

. . .

Z

2

Z

1

image3.emf
P

a

13

P

a

1n

P

a

1(k+1)

......P

a

1k

P

a

12

P

a

11

P

a

23

P

a

2n

P

a

2(k+1)

......P

a

2k

P

a

22

P

a

21

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

P

a

m3

P

a

mn

P

a

m(k+1)

......P

a

mk

P

a

m2

P

a

m1

Information bits

P

a

13

P

a

1n

P

a

1(k+1)

......P

a

1k

P

a

12

P

a

11

P

a

23

P

a

2n

P

a

2(k+1)

......P

a

2k

P

a

22

P

a

21

.

.

.

.

.

.

.

.

.

......

.

.

.

.

.

.

.

.

.

P

a

m3

P

a

mn

P

a

m(k+1)

......P

a

mk

P

a

m2

P

a

m1

Zero-padding

b

1

b

2

b

3

b

4

……b

(K-2)

b

(K-1)

b

K

b

1

b

2

b

3

…....................…..0000000000

image4.emf
Information Block

0

Information Block0Parity Bits

(Shortening)

(LDPC Encoding)

Information BlockParity Bits(Zero Removal)

(Virtual Circular Buffer)

Transmitted

Bits

(n-m)×Z

m×Z

Punctured Bits

(Repetition)

image5.emf
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051

022517717260152172234230251101691441521601712123210

1991381781341011571772251891122071732517215819522500

2207101121154187243771192411611310113620528129000

3105188123141213557510411310724712023522110716617200

4198162107152117895815463111233851892141715920500

519688124211170871128825511421782851703010010

61977010719913680

7230100821751482270

816415299136361471500

981150108172154980

10165230131731681370

11239229209246182220

121541561411702181410

131011141761802322030

141512131811731730

15180951712151831510

1610411810473200

17103180145173782050

18137352171760

192172532222510

20215123118122123

2117512518723337

22140201852333

235240541325

24235239211213

25204118253117

261957210118

27133161203163134

2814622877148

29178176208240

30186245252177

31106105180105

32115121227105198

33213239247147

3419788137194

3518912611912514

361851255116

3791892742

38206107102139

39823885118

4083717685

41210194172193

42214156215148

4318112425317133

441822351643

4510149200

461231155617

47178179187169

48187180117

499310812740

5012011612733

5174839435

5213018367

535318118014

54102108110

55242187248160

567976142139

5723716611921

58131194932

59701258

60249242115245

616861535

62113105232130

63546199

6411821311832

651026620267

image1.emf
802.11n-like

PI00

0II0

I0II

P00I

I

I

I

I

I

I

I

I

I

I

0

Single Parity-Check

Extension

Part-1 Submatrix

Part-2 Submatrix

