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Introduction
In the RAN1 #85 meeting, it was agreed that companies providing evaluations or proposals for LDPC codes are encouraged to show how; 1) Multiple code rates and multiple code sizes would be supported, 2) Suitable granularity of  information block size and code rate would be supported, 3) To support HARQ with/without IR [1]. 
In [2], [3], Samsung proposed a quasi-cyclic (QC) LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. Furthermore, Samsung conduct the simulation for evaluating the performance of the proposed QC LDPC code in [4]. 
In this contribution, we present the parity-check matrix of the proposed code and introduce a detailed lifting, shortening and puncturing method. 
Flexible LDPC Codes Based on Lifting and Shortening/Puncturing
1 
2 
Quasi-cyclic LDPC codes 
Let  be the  matrix given by 

where  are exponent indices of permutation matrices,  and  are the numbers of column and row blocks, respectively.  is just the circulant permutation matrix which shifts the identity matrix  to the right by  times for any integer , . For simple notation, we denote the  zero matrix  by. When  has full rank, we can assign  information bits to some  column blocks. (For our convenience, we call these  column blocks information column blocks). Then the code with  is referred to as a QC LDPC code. Furthermore, let  be the expoment matrix of  given by

An example of a parity-check matrix for a  QC LDPC code with  and  is given by 

Proposed structure 
The structure of the proposed QC LDPC code is depicted in Figure 1. The proposed code can be regarded as a QC LDPC code obtained by concatenating a small QC LDPC and many single parity-check codes. The more single parity-check codes are concatenated, the lower rate QC LDPC codes can be obtained. Furthermore, the structure of single parity-check (SPC) extension from the higher rate code could be a good candidate to support IR-HARQ since the SPC extension makes it possible to create additional parity bits as much as needed. Note that when puncturing of single parity-check bits (so called degree-1 parity bits) to obtain a high code rate, the punctured parity bits are completely ignored in the LDPC decoder. 
[image: ]
Figure 1. Structure of proposed QC LDPC code 
Lifting method  
When adjusting the size of circulant permutation matrices according to the target code block size, each exponent indices can be easily calculated by the specified formula. For example, we can obtain the exponent matrix  for the parity-check matrix  from the exponent matrix  for the parity-check matrix  as follows: 
[Lifting]

Here,  is the parity-check matrix consisting of  circulant permutation matrices and/or zero matrices for given integer  and  is an integer function of  and . 
We propose the lifting function  as follows:

where  means a modulo operation . Note that for , the  exponent matrices have exactly the same integer entries. Therefore, if , a given exponent matrix for  can create  exponent matrices corresponding to  parity-check matrices. 
[image: ]
Figure 2. Lifting technique for length compatibility
Shortening 
If the information block size is  after the segmentation of transport block, we first apply the proposed lifting to a given exponent matrix with  submatrices in Section 2.2. Here,  is the least positive integer satisfying , i.e.,  is the positive integer such that . Then, we can derive the parity-check matrix for the QC LDPC code from the exponent matrix by -lifting. As described in Figure 3, zeros are inserted to () bits for shortening and they are not transmitted, which is also known to the receiver. Note that since  due to the minimality for the choice of , the maximum shortening size is .
In this contribution, for our convenience, we assume that the shortening is applied to the last () information bits, as depicted in Figure 3. 
[image: ]
Figure 3. Concept of shortening LDPC codes

Puncturing and Repetition
Rate-matching can be simply implemented in the same manner as LTE standard. First, the information block is shortened to fit the number of information size and then the puncturing is applied to some information or parity bits to support variable code rates, as described in Figure 4. 
[image: ]
Figure 4. Concept of rate-matching process
Note that the parity puncturing is sequentially applied from the last parity bits in reverse order. 
To support code rate lower than a given LDPC code, we apply repetition. The repetition is applied as described in Figure 4.

[bookmark: _GoBack]Observation 1: QC LDPC codes constructed by the lifting, shortening and puncturing support variable code rates efficiently.
Proposal 1: To support the rate-compatibility of QC LDPC codes comparable to that of turbo code, the lifting, shortening, and puncturing techniques should be adopted. 
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Appendix: Example of Parity-Check Matrix 
3 
4 

- , , : 98, 66, 32 
- Maximum variable and check degrees: 15, 19
- No. of layers: 16 
- The information bits corresponding to the first two column blocks are always punctured. 
- Lifting function:

- The code rate  can be defined by 

where  is the number of parity bits to be punctured.






※ Please refer to the excel sheet attached separately. 
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