
3GPP TSG RAN WG1 Meeting #86	R1-166932
Gothenburg, Sweden, 22-26 August 2016

Source:	Ericsson
[bookmark: Title]Title:	Implementation Consideration of Channel Coding Candidates for NR
[bookmark: Source]Agenda Item:	8.1.4.1
[bookmark: DocumentFor]Document for:	Discussion and Decision

Introduction
In this paper, we discuss implementation complexity, hardware cost and the effort needed to implement the codes selected for evaluation.

Implementation Complexity
A code is evaluated from its behavior. Evaluation criteria of code selection for NR should consider all of the following:
· Performance
· Throughput
· Latency
· Flexibility
The performance of the code must be competitive for all channel conditions, and the implementation algorithm should be selected accordingly.
The maximum achievable throughput must be high. Being able to achieve throughput is important for eMBB, while throughput is not as important for other deployment scenarios.
The minimum achievable latency must be low. Low latency is important for URLLC deployment. Moreover, the low latency is especially important for channels with requirements on response time, like ACK/NACK.
The flexibility of the code must be high. Flexibility means that the code must be able to support a wide range of info block length and code rate. Further, the code is preferably able to support a wide range of data channels designed for URLLC, mMTC, and eMBB.
The code for NR must fulfill all the evaluation criteria listed above. The use cases (channels) can be covered by one code implementing all use cases or a combination of codes selected to handle different use cases.

The implementation of the code needs to fulfill the evaluation criteria but it also needs to be good from hardware cost and implementation effort point of view.
The cost of the hardware implementation is calculated in
· Hardware cost (area, power)
· Implementation effort
All the evaluation criteria for the codes can be affected by the choice of algorithm that is implemented and the implementation techniques used. The effort for implementing the algorithms and the techniques used to optimize one or several of the evaluation criteria must be considered. This paper will cover the effort and the hardware cost for implementing the different codes when complying with all the evaluation criteria.

Turbo code
Behavior
The native behavior of the turbo code is that it has good waterfall performance. The turbo decoder can be implemented with MAP approximation, e.g., scaled max-log-MAP [3], without significant loss in performance. The decoder is iterative and its performance and throughput depends on the number of iterations; up to a certain limit (e.g., 8 iterations), more iterations gives better performance but lower throughput and longer latency. The constituent decoder is sequential in nature and it needs methods like windowing to improve the throughput and lower the latency. Turbo code has good flexibility in terms of both info block size and code rate. Due to the convolutional code based constituent code, an arbitrary number of info bits can be encoded. In terms of code rate, it is easy to send more or less of the systematic bit and parity bits over the channel using a rate matching algorithm, e.g., the circular buffer based algorithm adopted in LTE. The rate matching algorithm performs repetition or puncturing as needed, hence providing code rate with arbitrary granularity.

Effort
The LTE turbo decoder is already specified, and as long as no changes are added to the code, no effort is needed.
To mitigate the low throughput and high latency due to the sequential behavior of the turbo decoder, windowing decoding is required. Windowed decoding is assumed to be used already in the LTE turbo decoder; hence no additional effort is required. However the LTE turbo decoder has limitations when it comes to high throughput. Highest throughput in literature among 3GPP compliant decoders is 2.3 Gbps [6]. To reach throughput requirements for eMBB it is assumed that one turbo decoder core will not be enough, instead parallel turbo decoders are required, leading to additional area and power cost. The effort to implement parallel turbo decoders is estimated to be low.
The LTE turbo decoder has block length limitation (K=6144 bits). If longer block lengths are needed then effort is needed to extend the block length [5]. The effort to implement longer block length on the LTE turbo decoder is estimated to be low/medium.
The low code rate for URLLC will have to be reached using repetition or new mother code, or a combination of the two [5]. The effort to implement a new mother code to the LTE turbo decoder is estimated to be medium.

LDPC code
Behavior
The native behavior of the LDPC code is that it has capacity-approaching performance when the info block length is large. Also, the size of the parity check matrices, based on which a typical message-passing decoder for LDPC codes is performed, are inherently small for high code rates, which in turn leads to low complexity decoding. The LDPC decoder can be implemented with soft-value approximation methods but with some loss in performance [4]. Similar to turbo decoder, the decoder is iterative. The performance and throughput of LDPC code depends on the number of iterations, where more iterations gives better performance but lower throughput and longer latency. The decoding is parallel in nature and is good for high throughput and low latency use cases. To achieve the comparable BLER performance, the number of iterations needed for the LDPC decoder is more than what is needed for the Turbo decoder. The required number of iterations can be partly reduced by using layered scheduling instead of flooding scheduling, although the decoding latency per iteration of layered schedule is mb times as long as that of flooding schedule, where mb is the number of rows in the base matrix. Layered scheduling LDPC need about three times the number of iterations required by the turbo decoder. Compared to turbo code, the LDPC code is defined by a parity-check matrix, where many varieties are possible when it comes to code design. However when it comes to flexibility for supported block length and code rates, due to its block code nature, LDPC code is more limited (medium) compared to turbo code. High granularity of block lengths and code rates increases the design complexity and lowers the area efficiency since both lowest and highest H-matrix needs to stored and calculated as well as highest and lowest sub-block size. Puncturing and repetition can be utilized to lower the number of codes that needs to be implemented and simplifying the design. However, LDPC codes are generally not as robust to puncturing as turbo codes in that the performance degradation due to puncturing is more significant with LDPC codes.
Effort
The LDPC decoder is rather well known and is specified and used in several available standards. The implementation is rather straight forward based on message passing in an iterative manner between the variable nodes and check nodes. The effort for the LDPC decoder implementation is estimated to be medium.
The performance of the LDPC decoder depends on the decoding algorithm, exact (SPA) or approximate (MPA) [4], as well as number of iterations that is run. To improve the performance at low number of iterations layered design can be implemented [7]. The effort for implementing layered design is estimated to be medium.
The throughput of LDPC decoder depends on how many sub-blocks are calculated in parallel as well as how much iteration that is needed to achieve the performance target. To compensate for the slower iterative convergence as compared to the turbo decoder, additional parallelism needs to be implemented. The effort for the additional parallelism is estimated to be low due to the native parallel nature of the LDPC decoder. The area/power will increase due to the additional parallelism implemented.
The latency can also be low. As long as the implementation is sufficiently parallel and high number of iterations can be avoided the latency can be kept low. No additional effort for the latency is estimated.
For NR, if the ambition is to adopt a fully flexible LDPC code without adopting other code types, high flexibility is required in block length, code rate, sub-block size, rotation index and H-matrix structure. The effort for implementing the required flexibility is estimated to be medium/high. The area and power will also increase since the design space grows with the flexibility; the increase is estimated to be medium.

Polar code
Behavior
The native behavior of the Polar code is that it has substantially inferior performance when using its standard successive cancellation decoding techniques (except for infinite long bursts), when compared with other codes. For moderate burst length size, list successive cancellation decoder, together with aid of CRC, is needed to achieve good performance. Hence when evaluating the Polar decoder implementation, the list successive cancellation decoder has to be used. The Polar decoder kernel (e.g., , calculation) can be implemented with approximation methods without significant loss in performance. The performance of the polar code depends on the list size, the placement of the frozen bits in code word and the CRC size. The decoding is sequential in nature and needs methods like tree-pruning and other methods to improve the throughput and lower the latency. The flexibility of the decoder implementation is low since each combination of info block length, code rate, and frozen bit location needs to be implemented with specific support in the hardware. The code flexibility when it comes to block length is also low since the code block size N is defined as a power of two. Puncturing can be done but additional effort is needed to avoid catastrophic puncturing patterns.

In addition to the evaluation criteria (performance, throughput, latency, flexibility), the excessive memory access and memory handling for coping with the lists needs to be solved for the polar list decoder implementation.
Effort
The Polar decoder is rather unknown in real-life applications. Polar code has not been proven in any existing standard. The implementation of the list successive cancellation decoder (LSCD) involves several steps including the native successive cancellation decoder (SCD) that is run for each list, as well as sorting among the lists, and list management (LM) including possible data coping. The effort for Polar code based implementation is estimated to be high.
The performance of the Polar decoder based on the LSCD depends on how many lists that needs to be supported and how many information bits that are set aside for sending the CRC value. Most performance simulations seem to assume a list size of 32, in order to achieve performance comparable to that of LDPC code and turbo code. No additional effort for performance is added, since LSCD with list size of 32 is considered already in the initial implementation.
The throughput and the latency limitation due to the sequential behavior need to be solved. Both the SCD part as well as the LM part needs to be improved. The SCD can be implemented in parallel for different lists; in addition to that improvement to the sequential behavior can be done by implementing the Fast Simplified Successive Cancellation (Fast-SSC) [8] decoders and other optimization techniques. The LM part can be optimized with selective expansion (SE), Double Threshold Scheme (DTS) described in [8]. However, the need to support flexible positions of frozen bits complicates the overall implementation. The effort for implementing the improvements to the SCD is estimated to be high and the effort for implementing the improvements to the LM is also estimated to be high.
A fully flexible LSCD decoder is required to attain high flexibility in block length, code rate and position of the frozen bits. Such a LSCD decoder can be implemented by extending the Fast-SSC techniques, designing for the largest block length, and preparing a flexible structure, see [10]. The effort for implementing the required flexibility is nonetheless estimated to be high.
Memory handling issue with high memory usage and excessive memory access must be solved. One attempt is done by dividing the memory in partitions (see [11]). However, how this method works together the other optimization techniques is unclear. The effort for optimizing the memory usage is estimated to be high.
[bookmark: _Ref455490907]Summary of effort and hardware cost
The following code combinations are compared for supporting NR scenarios eMBB and URLLC:
· Turbo code only
· LDPC code only
· Polar code only with two sub-cases:
· LSCD algorithm only;
· Adaptive SCD/LSCD decoding algorithm
· Turbo/LDPC combo
Note that TBCC is not considered in the above for simplicity. For mMTC deployment, TBCC can be added on top of the above list. The Turbo core is assumed to be the legacy turbo decoder based on LTE. All other cores is assumed to be new designs.
The effort to create a design that fulfill the evaluation criteria (performance, throughput, latency, flexibility) is summarized in Table 2.4.1.

Table 2.4.1: Estimated effort for implementing the different codes (- means no effort)
	
	Base impl. of the block
	Performance
	Throughput
	Latency
	Flexibility
	Other

	Turbo only
	-
	-
	Low
	-
	Medium
	-

	LDPC only
	Medium
	Medium
	Low
	-
	Medium/High
	-

	Polar code only
	High
	-
	High
	High
	High
	High

	Turbo/LDPC combo
	Medium
	Medium
	Low
	-
	Medium
	-

The resulting hardware cost after the added implementation effort is summarized in Table 2.4.2.
Table 2.4.2: Estimate hardware cost after the effort for implementing the different codes is considered
	
	Area
	Comment

	Turbo only
	High
	Several parallel turbo decoders are required to get sufficient throughput.

	LDPC only
	Medium
	The flexible design requires additional logic and resources and moves the estimate from low to medium, especially low code rate is considered to have negative impact on the hardware cost.

	Polar code only: LSCD or SCD/LSCD combo
(L-16 or L32)
	Medium/High
	The excessive memory, the effort to solve the sequential behavior and the flexibility that needs to be implemented, all combined makes the hardware cost estimate to be medium/high. A design that fulfills all evaluation criteria still needs to be described and presented.

	Turbo/LDPC combo
	Low
	Turbo reuse from LTE + dedicated LDPC decoder for high code rate and long block lengths is an area efficient combination.

From estimation of the implementation effort and the hardware cost, a set of observations can be made.
The lowest effort is to reuse the turbo decoder from LTE. However this is affected by high hardware cost, since it cannot handle the high throughput required by eMBB without new turbo code design. A new high throughput turbo decoder needs to be proposed and used together with the LTE turbo decoder for the turbo decoder to be competitive.
The LDPC has the second lowest effort. However high flexibility leads to both high implementation effort and high hardware cost.
The polar code has significantly the highest implementation effort. Even when putting in high effort in the implementation the hardware cost is estimated to be “medium” to “high”, based on available optimization techniques. An implementation satisfying all the evaluation criteria in one hardware design is not found. Instead each published decoder implementation tends to solve one implementation issue only. This exposes the immaturity of Polar decoder implementation. Hence there is substantial risk in adopting Polar code in NR, if simulated performance cannot be fulfilled in actual hardware implementation. It is emphasized again that if one is forced to implement SC decoder (or a list decoder with small L) due to the substantial implementation effort and hardware cost, then NR performance is poor since Polar code with SC decoder has 1-3 dB worse performance compared to turbo and LDPC code. .
The Turbo/LDPC combination shows up as good candidate from hardware cost and implementation effort point of view. Turbo and LDPC code can complement each other. The LDPC only have to implement a reduced set of the block lengths and code rates, while the turbo decoder handles the rest. The Turbo decoder is largely reused from LTE while the LDPC decoder can be fairly easily implemented for a small set of H matrices. The LDPC code can be used to handle the high throughput scenarios where the Turbo decoder is too weak. The turbo decoder can be used to provide high size/rate flexibility where the LDPC has weak flexibility.
Conclusion

In this contribution, we discuss implementation aspects of the decoders for Turbo codes, LDPC codes and Polar codes. Based on the discussion, we have the following proposal:

1. [bookmark: _GoBack]De-priories polar codes from NR.
1. Evaluate a combination of LDPC and Turbo code for eMBB, URLLC, and mMTC.

References
[bookmark: _Ref442441852][bookmark: _Ref441562466]RP-160671, “New SID Proposal: Study on New Radio Access Technology,” NTT DOCOMO, 3GPP TSG RAN Meeting #71, Göteborg, Sweden, 7.-10. March, 2016.
RP-161266, “5G architecture options – full set,” Deutsche Telekom AG, June 2016.
[bookmark: _Ref455488342]R1-164358, “Performance Evaluation of Turbo Codes and LDPC Codes at Lower Code Rates,” Ericsson.
[bookmark: _Ref455488767]R1-164359, “Performance Evaluation of Turbo Codes and LDPC Codes at Higher Code Rates,” Ericsson.
[bookmark: _Ref450571415]R1-164361, “Turbo Code Enhancements”, Ericsson.
[bookmark: _Ref455474332]R-xxxx, “Survey of implementation code types v1”, Ericsson
[bookmark: _Ref455489983]D Hocevar, “A reduced complexity decoder architecture via layered decoding of LDPC codes”, IEEE SIPS, 2004
[bookmark: _Ref455409109]G.Sarkis, P Giard, A Vardy, C Thibeault and W J Gross, “Increasing the Speed of Polar Decoders”, IEEE Workshops on Signal Processing Systems, 2014.
[bookmark: _Ref455413702][bookmark: _Ref455410794]G. Sarkis, P. Giard, A. Vardy, C. Thibeault, and W J Gross, “Fast polar decoders: Algorithm and implementation,” IEEE J. Sel. Areas Commun., vol. 32, no. 5, pp. 946–957, May 2014.
Y Fan, C Xia, J Chen, C Tsui, J Jin, B Li, “A Low-Latency List Successive-Cancellation Decoding Implementation for Polar Codes”, IEEE Journal of sel. Areas in Com. 2016.
[bookmark: _Ref455414488]G. Sarkis, P. Giard, A. Vardy, C Thibeault, and W J Gross, “Flexible and Low-Complexity Encoding and Decoding of Systematic Polar Codes,” IEEE Trans. On Commu. To be published
[bookmark: _Ref455414835]S A Hashemi, A B-Stimming, P Giara, C Thibeaul, W J Gross, “Partitioned successive –cancellation list decoding of polar codes”, IEEE Int. Conf. on ASSP, 2016

