Page 1

3GPP TSG RAN WG1 Meeting #86
 R1-166558
Goteborg, Sweden Aug 2016
Agenda item:
8.1.4.1
Source:
Intel Corporation

Title:
Channel coding scheme for EMBB
Document for:
Discussion
1. Introduction
In this contribution, we provide some additional details for LDPC code design for EMBB case. The suitability of LDPC for EMBB scenario is discussed in a companion contribution [1].
2. LDPC code design aspects
LDPC codes have been adopted in many different standards such as IEEE (802.11n/11ac/11ad, 802.3an, etc), broadcasting standards (DVB, ATSC) as well as in disk drive industry. One key attractive feature of LDPC is that they lend themselves to higher degree of parallelism, which can lead to very high throughputs as well as reduced latency in both encoding and decoding. Structured LDPC codes based on shifted Identity matrices originally proposed by Tanner have been used as fundamental building blocks for several designs (such as 802.11n, 802.16e, etc.).

A structured LDPC code with codeword length n = z∙nb and information block k = z∙kb, and a shift size z (sub-block size or lift size), has code rate r = k/n = kb/nb. The LDPC encoder encodes an information block i = i0, i1,i2…ik-1 into a codeword c, of size n, c = (c0, c1,….ck-1,ck….cn-1). In systematic encoding, the first k bits of the codeword are typically the same as information bits i.e. cj = ij, for j = 0 to k-1. The codeword c satisfies the parity-check equations H∙cT = 0, where H is the m x n parity-check matrix, and m = n-k.

The parity-check matrix H can be partitioned into square blocks (submatrices) of size z x z. These submatrices are either cyclic-permutations of Identity matrix (or shifted Identity matrix) or null matrices. For instance, a cyclic permutation matrix Pi is obtained from the zxz Identity matrix by cyclically shifting the columns to the right by i elements. The matrix P0 is zxz Identity matrix. For convenience, P-1 may be used to denote the null matrix of size z xz.
For example, for z = 5, the following show example matrices,

[image: image1.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

P

,
[image: image2.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

4

P

,
[image: image3.wmf]ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ë

é

=

0

0

0

1

0

0

0

0

0

1

1

0

0

0

0

0

1

0

0

0

0

0

1

0

0

2

P

.
Using the above notation, parity-check matrices for large block sizes can be defined using a very compact notation. For example, an expanded matrix HM (mb x nb) may be used to denote the mbz x nbz binary parity-check matrix obtained by using a compact base matrix Hbm (mb x nb) and a shift size value z.
Encoding
Linear time encoding is facilitated through the adoption of a parity-check matrix that has dual-diagonal parity-check portion. This enables a repeat accumulate like structure for determining the parity-check bits [5]. The repeat accumulate structure can be applied at block level to enable efficient high-speed encoding. For supporting incremental redundancy, single-parity-check based encoding can also be applied at block level.
Decoding

Structured LDPC codes also support layered belief propagation decoding algorithm which can converge faster (in number of iterations) relative to standard belief propagation decoder. In the decoder, the check node update (CNU) can be performed on each layer (or a block row) at a time. If further reduced latency is desired, the CNU can be performed on multiple layers simultaneously. Thus, the LDPC code design should be flexible enough to allow the decoder to choose the desired amount of parallelism based on the desired throughput/latency requirements. This would be analogous to LTE turbo code interleaver that enables different levels of parallelism based on the target data rate/latency.
As shown in companion contribution [1], typical LDPC decoding complexity is mainly driven by the three major factors – memory, logic for check node update, and permutation network [7] and in that order and that with a suitable selection of shift sizes, base matrix and maximum shift size, the decoder complexity can be kept reasonable.
Block size support

Similar to the LTE turbo codes, the block size selection needs to consider underlying code structure. For example, in LTE, the block sizes were byte-aligned and cover the range 40-6144 with different step sizes, starting with step size of 8 at lower end and growing to a step size of 64 bits at the higher end. This was done to enable LTE to support windowed turbo decoding with up to 64 parallel MAP processors at the higher block sizes.

In principle, LDPC codes can be designed to support any arbitrary information/code block size. However, considering efficient encoding/decoding, it is desirable to support a limited set of block sizes that can be natively designed for LDPC. The other block sizes in between can be supported via zero-padding operation (similar to the LTE turbo code).
For example, assume a rate-1/2 design based on 12 x 24 base matrix (i.e. mb = 12, nb = 24). Now the expansion of this using different shift size values z yields parity-check matrices that support information block size of 12.z.

If z = {1,2….512}, the support information block sizes are {12, 24, 36…..6144}. In principle, each expanded matrix can be designed independently, but compact techniques to derive expanded matrices for different z values from one expanded matrix are also feasible. For example, modulo or scaling techniques can used as in [6].

We can then consider designing the parity check matrix for the maximum desired shift value. The modulo-scaling operation can be used to derive the prototype matrix for other supported z values. Each value in the parity check matrix is computed by modulo operation of the corresponding entry in the original matrix, and the desired z value i.e. x is replaced by x mod z.

From a decoder perspective, additional features may be desirable when considering the set of shift values to be supported. For example, the set of z = {1,2….512} may be too fine granular compared to LTE (where there are only ~200 QPP interleaver sizes). Thus, some decimation can be considered if it can provide benefits in decoder implementations, e.g., {4 8 16 24 40 80 160 256 320}. As shown in [1], with suitable shift size selection, the desired range of block sizes can be supported.
As an example, figure 1, shows a possible combination for supporting high rate codes. The dimensions on the left hand side are for the base matrix, and extension to IR-HARQ can be performed as shown in next section.
[image: image4.emf]z

mbxnbkb 1 2 4 5 8 10 16 20 32 40 60 64 80 100 120 140 160 180 200 220 240 260 280 300 320

5x21 161632 64 80128160256320 512 640 9601024128016001920224025602880320035203840416044804800 5120

5x29 242448 96120192240384480 768 96014401536192024002880336038404320480052805760624067207200 7680

5x33 282856112140224280448560 896112016801792224028003360392044805040560061606720728078408400 8960

5x37 323264128160256320512640102412801920204825603200384044805120576064007040768083208960960010240

Figure 1. Illustrating the set of supported block sizes for (zmax = 320, B=16) for different base matrix dimensions.
Proposal 1: Shift-size scaling for efficient block size support is supported for LDPC.
HARQ/Code rate support
A limited set of code rates can be natively designed for LDPC. Other code rates in between can be achieved via puncturing/repetition/zero-padding operation. Another way to achieve flexible code rate is to support parity-check matrix extension, which also supports IR-like operation.
LDPC codes are typically designed for a particular code-rate/block-size combination and similar to LTE turbo codes, puncturing/shortening can be used to achieve different codes rates. However, if puncturing is used to obtain a higher rate code from a very low mother code rate (lot more parity-checks with punctured variable nodes), then from decoder perspective, mode operations may be required (similar to turbo code where ops count is same irrespective if the code is operating at 1/3 or 5/6). Thus, another option to support HARQ-IR is to try to achieve lower code rates by parity-check matrix extension. For example, assume the parity-check matrix HTx1 is used to encode an information block to generate parity-bits for 1st transmission (as shown below). Thus the codeword in the first transmission can be [i p], where i denotes systematic bits and p denotes the parity-bits.

[image: image5.wmf][

]

p

s

Tx

H

H

H

1

1

1

=

[image: image6.wmf]ú

û

ù

ê

ë

é

=

q

p

s

p

s

Tx

H

H

H

H

H

H

2

2

2

1

1

2

0

If a retransmission based on IR is desired, then the parity-check matrix HTx1 can be extended by adding sub codes (or additional parity-check rows) to generate a new set of parity-bits for the second transmission. This extension is shown below. Thus, the codeword in the second transmission can be [i p q], where q denotes the additional parity-bits available for transmission. One benefit of such IR based extension is that the amount of extension can be controlled by design. For example, consider the peak rate-like scenario with large packet sizes/very high data/MCS (1st transmission rate close to 0.9). It may be possible to support only small extensions (e.g. to rate-6/7) to maintain throughput/latency target in the decoders compared to a typical scenario (e.g. low-to-medium MCS), where extension can be supported to code rates such as 1/3 (as in LTE) or even lower. Thus, we propose to consider parity-check matrix extension techniques for supporting IR-HARQ
Proposal 2: Parity-check matrix extension for supporting Incremental redundancy with LDPC code is supported.
3. Code designs for evaluations
RAN1 agreed for initial evaluations of different channel coding schemes in RAN1#84bis. In the attached text file (intelLDPC_EMBB.txt), we provide LDPC parity-check matrices that support coding parameters applicable to eMBB scenarios. The performance results are shown in the companion contribution [2]. Note that these matrices are provided for evaluations and it is expected that the designs can be refined further based on agreed design details.
For a given code rate, one base matrix is used with different shift size values (z) to support the block sizes closest to those selected for evaluations – modulo scaling is used in the evaluations in [2]. The same matrix is then used for different code rates – the first z systematic bits are always punctured.
Table 1. Parameters of the proposed parity-check matrices for evaluations.

	Code rate
	Base matrix size
	Shift size values
	Info sizes

	{1/3,1/2,2/3,3/4,5/6,8/9}
	5x29 (@r-6/7)

49x73 (@r-1/3)
	[24 40 80 160 256 320]
	[576,960,1920,3840,6144, 7680]

Another example of a parity-check matrix based on IR-extension is shown in [9], where a rate-1/3 matrix is extended down to rate-1/6. This is used with a different set of z values for showing performance for URLLC/MMTC scenario.
4. Conclusion

In this contribution, we provide an overview of structured LDPC codes, including the aspects related to encoding/decoding/flexibility in terms of block-sizes/code-rate/IR-HARQ support. We also provide some parity-check matrices for performance evaluations. We propose the following for progressing work on LDPC for EMBB high throughput scenario:

Proposal 1: Shift-size scaling for efficient block size support is supported for LDPC.

Proposal 2: Parity-check matrix extension for supporting Incremental redundancy with LDPC code is supported.
References

[1] R1-166557
Intel, Comparison of channel coding schemes for NR, RAN1#86
[2] R1-166559
Intel, Performance evaluation of channel coding schemes for NR, RAN1#86
[3] Motorola, “LDPC Decoding for 802.22 Standard” IEEE P802.22, 2007

[4] R1-060874, “Complexity Comparison of LDPC Codes and Turbo Codes”, 3GPP TSG RAN WG1#44bis, Athens, Greece. 27 - 31 Mar 2006.

[5] A. Nimbalker, Y. Blankenship and B. Classon, “Turbo-like decoding algorithm for structured LDPC codes”, ISIT 2006.

[6] 802.16e, LDPC design

[7] “Error control coding for B3G/4G wireless systems : Paving the way to IMT-Advanced standards”, Wiley, April 2011.

[8] M. Rovini, G. Gentile, and L. Fannucci, “Multi-size circular shifting networks for decoders of structured LDPC codes,” Electronics Letters, Aug 2007.

[9] R1-167703, Intel, Channel coding scheme for URLLC, MMTC, and control channels, RAN1#86

PAGE
4/4

_1524650994.unknown

_1524654470.unknown

_1524654808.unknown

_1524650995.unknown

_1524650992.unknown

