Page 1
3GPP TSG-RAN WG1 #86 	R1-166372
22th – 26th August 2016
Gothenburg, Sweden

Agenda item:	8.1.4.1
Source: 	Qualcomm Incorporated
Title: 	Performance and implementation comparison for EMBB channel coding
Document for:	Discussion/Decision
Introduction
The purpose of this document is provide more detailed discussion on channel coding performance, implementation complexity and latency tradeoffs of LDPC, Polar, and Turbo codes for the EMBB use case. In RAN1 #84b is was agreed that [1]
· Selection of 5G new RAT channel coding scheme(s) will consider,
· Performance
· Implementation complexity
· Latency (Decoding/Encoding)
· Flexibility (e.g., variable code length, code rate, HARQ (as applicable for particular scenario(s)))

In the previous RAN1 #85 considerable study was put forth in understanding the performance across different blocklengths and data rates, essentially demonstrating the flexibility for each of the candidate coding schemes. Additionally, this was jointly incorporated into a computational complexity analysis to provide initial insights between candidates (properly normalized for performance) [6].

For this contribution, the implementation area will be studied for the most promising decoding algorithms of each candidate channel code, and then the resulting decoding throughput and latency will also be addressed for such algorithms. Unlike a pure literature survey on state of the art techniques [2,5], we further extrapolate the main principles and apply them to coding candidates suitably normalized to support the same level of flexibility for specification.

Performance
From the previous RAN1 #85 meeting, performance was comprehensively studied across different blocklengths and code rates for many design examples of each candidate EMBB coding scheme. Although simulations were not completely aligned or cross verified between companies, relatively small performance gaps were observed between the candidate EMBB schemes. See for instance Figure 1.
[bookmark: _GoBack]It is generally expected that further optimization of code design and tweaking of decoding algorithm parameters would not lead to any dramatic deviation from these initial observations. Thus, the focus here it to understand if there are any significant differentiating factors in terms of the implementation costs. The only aspect for normalization is that the same flexibility support is assumed among all candidates.

Figure 1. Example performance comparison from RAN1 #85

Implementation Area
In this section we focus on the decoder implementation area, as that is main contributor to the implementation area when considering channel coding. In principle, there are two main considerations for implementation area, (1) the memory for LLR buffer and decoding algorithm needed to support all blocklengths and rates for the specification coding scheme, and (2) the update logic related to the decoding algorithm. (The read-only memory associated with storage of the code specification is typically negligible.)
As an example for discussion, it is assumed all candidate EMBB coding schemes share the following properties which will dictate the implementation area.
· Lowest coding rate is 1/5
· Largest code blocklength is N=40,000
· Largest information blocksize to support full rate compatibility is K=8000
Memory
The following memory usage is shared across all Polar, LDPC and Turbo.
· Double buffer channel LLRs for all codes up to N <= 40k
· Qc: the number of bits in a channel LLR
· Qi: the number of bits in an internal LLR
· Storage for channel LLRs might be greater than Qc bits per LLR in some cases indicated below.

Offset Min-Sum LDPC Decoder
We use an offset min-sum LDPC decoder with a layered decoding schedule. This enables reduction in memory and in the number of required decoding iterations.
Instead of storing the channel LLRs and the check-to-variable node messages separately, only the sum is stored for each variable node. Each of these sums is Qc bits wide and we need to store 2*N of them for a total channel LLR memory of 2*N*Qc bits.
Each check node stores the 1st and 2nd minimum magnitude, each is Qi -1 bits wide, and the index of the minimum magnitude, which is 5 bits for the proposed N <= 40000 design. In addition, each check node stores the signs of all outgoing messages. We provision enough check-node memory to accommodate the lowest rate (1/5) case, where the average check node degree is 5 and there are N(1 - Rmin) check nodes. The total check node memory is .
Finally, the memory width is Zmax LLRs, where Zmax is the maximum lift size.
List Decoders for Polar Codes
To double-buffer channel LLRs, the decoder requires 2NQc bits. In addition, each list element stores LLRs for a total of LNQi bits of internal LLR memory.
Similarly, the list decoder stores two N-bit estimated codewords and NL internal bit estimates.
While the list decoder also stores L path metrics (of Qm bits each), the size of this memory is negligible compared to the rest and we ignore it in this analysis. Therefore, the total memory required by the list decoder is approximately 2N(Qc + 1) + N*L(Qi + 1) bits.
Memory width is L*P LLRs, where P is the level of parallelism and affects latency as will be discussed later.
Max*-Log-Map Turbo Decoder
Similar to the other decoders in this section, the turbo decoder double buffers the input channel LLR in a bit memory.
In terms of internal memory, the turbo decoder stores the forward and backward metrics, and , but calculates the branch metric, , requiring approximately (ignore tail bits) bits of memory, where M is the convolutional code memory. The two sets of extrinsic LLRs exchanged between the component decoders are also stored in a bit memory.
Therefore, the total memory required by the turbo decoder is bits.
Summary
· N = 40000, K = 8000.
· LDPC: Qc = 7, Qi = 5.
· Polar: Qc = 5, Qi = 6.
· Turbo: Qc = 6, Qm = 9, Qe = 8, M = 3.

	
	LDPC
	Polar
	Turbo

	Channel LLRs
	
	
	

	Output Memory
	
	
	

	Internal
	
	
	

	Total (N = 40k)
	1.14 Mb
	5.6 Mb (L = 16)
3.0 Mb (L = 8)
	1.8 Mb

	Total (N=40k) Normalized to LDPC
	1
	4.9 (L = 16)
2.6 (L = 8)
	1.5

Update Logic
Offset Min-Sum LDPC Decoder
Using a serial check-node and variable-node updates reduces implementation complexity and the critical path length.
The check node processor requires two adders to reconstruct the variable node messages and one absolute value calculator and two comparators to find the first and second min. Another adder is needed to apply the offset.
The variable node processor requires two adders to reconstruct the input messages and another two to calculate the new message.
We implement Zmax combined variable/check node processors for a total computational-logic complexity of 8*Zmax adders and 2*Zmax comparators.
To increase throughput and decrease decoding latency, the number of variable/check node processors can be increased and so can the level of parallelism inside the variable/check node processor.
SSC-List Decoder for Polar Codes
A polar code of length N is the concatenation of two polar sub-codes of length N/2. This concatenation process is applied recursively until sub-codes of length 1 are reached. These length-1 sub-codes either carry an information bit, or a frozen bit. Successive-cancellation (SC) decoding calculates the input to each sub-code recursively until length-1 sub-codes are reached. At which point, the single bit is estimated to be 0 if it is frozen, or using the sign of the LLR (threshold detection) if it is an information bit. Recursively decoding every sub-code leads to SC decoders having high latency.
Simplified SC (SSC)-based decoding reduces latency by directly decoding sub-codes when implementation and computational complexity constraints permit. Examples of these sub-decoders are:
· Decoders for rate-0 sub-codes whose output is known a priori to be the all-zero vector.
· Decoders for rate-1 sub-codes whose output is the element-wise hard-decision decoding of the input LLRs.
· Decoders for repetition codes.
· Exhaustive-search maximum-likelihood (ML) decoders, the maximum length and dimension of the sub-codes on which they operate is limited by available computational elements.
List decoding can also benefit from SSC latency reduction techniques. One major difference between SC-List and SSC-List decoding is that, in the latter, directly-decoded sub-codes can generate multiple candidates per list item. Whereas SC-List decoding, because it arrives at single-bit sub-codes, only generates two candidates per list item.
We discuss two SSC-List decoding implementation strategies:
· Polar-A (based on [2])
· Performs approximations that can degrade performance.
· Generates two candidates per rate-1 sub-code.
· Frequency does not scale well with list size.
· Directly decodes (ML) any sub-code of length <= 16 and dimension <= 8.
· Lower latency (in cycles) than Polar-B.
· Higher implementation complexity than Polar-B.
· Polar-B:
· Negligible performance degradation compared to SC-List.
· Generates four candidates per rate-1 sub-code.
· Frequency scales well with list size.
· Does not utilize exhaustive-search ML decoding.
· Higher latency (in cycles) than Polar-A.
· Lower implementation complexity than Polar-B.

F and G blocks:
The decoder implements L*P/2 f and g blocks. This number is limited by the available memory width per list item (P).
Each f block performs and consists of two 2s-complement-to-sign-magnitude converters, a minimum-value calculator, and one sign-magnitude-to-2s-complement converter. The converters can be implemented using one adder each and the minimum value calculator can be implemented using a comparator.
Each g block performs or depending on a combination of estimated bits and consists of an adder and a subtractor.
The total complexity of the f and g logic is L*P/2 * (3 + 2) = 5/2LP adders and L*P/2 comparators.
Path-metric Sorting
The list of path metrics is sorted using a bitonic sorting network with M=2L (Implementation A) or M=4L (Implementation B) inputs. The basic building block in a sorting network is a 2-input sorter composed of a comparator and two 2x1 multiplexers. A sorting network with M inputs has 2-input sorters, leading to an implementation complexity of comparators.
Since Polar-B generates four candidates per list item for each rate-1 sub-code, M = 4L. In Polar-A, M = 2L. However, due to the presence of ML decoders, Polar-A requires L + 3 sorting networks.
Sub-code Decoders
Rate-1 decoders need to find the minimum LLR magnitude in Polar-A and both the first and second minimum magnitudes (min-1 and min-2, respectively). The required resources to implement these operations are
· In Polar-A, finding the minimum magnitude requires P absolute value calculators (subtractors) and P – 1 comparators per list item.
· In Polar-B, finding min-1 and min-2 requires P absolute value calculators (subtractors) and 2P – 3 comparators per list item [3].
The repetition code decoder requires P adders per list item to accumulate its input that is segmented into blocks of P LLRs.
The ML decoder in Polar-A requires
· adders.
· 4L Min-1 and Min-2 calculators with 8 inputs that each require 4L*(2*8 – 3) = 52L comparators
Sliding window for Turbo (alpha/beta)
Sliding window decoding with W sliding windows implemented in parallel is used to reduce decoding latency. Each sliding window decoder implements a radix-4 SISO decoder to further reduce decoding latency. In a radix-4 SISO decoder, two consecutive trellis-steps are merged and processed simultaneously.
In line with the other decoders, we omit multiplexing and routing elements (including interleavers) from this analysis.
Forward and Backward Metrics
The forward metric, , for an even-indexed trellis stage, , which corresponds to two bits and is calculated according to:

Therefore, for each state, the SISO decoder implements 4 adders and three max* calculators to perform the forward metric calculations. In addition, to prevent metric saturation, an offset is subtracted from all metrics when needed, requiring one additional adder per state. There are states per SISO decoder and one SISO decoder per sliding window, yielding a forward metric implementation complexity of adders and max* operators.
Similar analysis for the backward metric, , yields the same implementation complexity of adders and max* operators.
Branch Metrics
Since the SISO decoder does not store the branch metrics, , but computes them when needed, two branch metric units are needed, one for the forward and one for the backward recursion. Each of the radix-4 branch metrics is the sum of two radix-2 branch metrics. There are radix-2 branch metrics in the merged radix-4 trellis stage, each of which is calculated according to

Both and , so multiplying by them can only change the sign of the other operand and can be implemented using a subtractor. Therefore, a single radix-2 branch metric calculator requires three subtractors and two adders and the total resources required to implement the 2W radix-4 branch metric units (two for each SISO decoder) in the decoder are adders.
LLR and Extrinsic Information Units
Since radix-4 SISO decoders are used, two LLR units required: one for each of the two output LLRs and . The calculation for each unit is

For each there are cases where and cases where , resulting in two max* tree with inputs each. A single LLR unit requires one subtractor and max* operators and the total for the decoder is adders and max* operators.
Each of the two extrinsic information calculations per SISO decoder requires two subtractions. The total implementation complexity for the entire decoder is adders.
Summary
	
	Add/Sub
	Max*

	Branch metric
	
	

	Forward metric
	
	

	Backward metric
	
	

	LLR computation
	
	

	Extrinsic information
	
	

	Total
	
	

A max* operation can be implemented using a comparator and an adder. Replacing the max* with these elements simplifies comparison with the other codes. The total implementation complexity becomes adders and comparators.

Code Comparison Summary
	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Add/sub
	
	
	
	

	Comparator
	
	

	

	

Example
· N= 40000, K = 8000, P = 256, Zmax = 384, M = 3, W = 8

	
	LDPC
	Polar-A (L = 16)
	Polar-B (L = 16)
	Turbo

	Add/sub
	3072
	47616
	18432
	4385

	Comparator
	768
	11520
	
	624

	
	LDPC
	Polar-A (L = 8)
	Polar-B (L = 8)
	Turbo

	Add/sub
	3072
	23808
	9216
	4384

	Comparator
	768
	4360
	
	624

Proposal 1: For the same flexibility assumption across all EMBB coding candidates, LDPC provides the most efficient implementation area for both logic and memory.
Latency and Throughput
Offset Min-Sum LDPC Decoder
As a result of the heavily pipelined architecture, the variable/check node processor requires 1 cycle to calculate a message (one message per edge). There are edges in the graph, where is the average variable node degree and the decoder processes Zmax of them simultaneously. The total decoding latency is cycles per codeword, where I is the number of decoding iterations performed. Base on this latency, the decoding throughput is information bit/s, where is the operating frequency.
· The decoder is expected to run at 1 GHz.
· In the high rate (8/9) case:
· Average = 4
·
·
·
· Latency is 658 cycles per codeword
· Expected throughput is 12.15 Gbps
· Throughput can be increased by processing more columns in parallel.
SSC-List Decoders for Polar Codes
Using a sorting network, one can sort 2L path metrics in cycles assuming each stage in the sorting network is performed in a cycle. A less conservative estimate assumes that 4 stages can be performed in a clock cycle, reducing the sorting latency to cycles. Since sorting occurs only after an information bit is estimated, the per-codeword latency due to sorting in SC-list decoding is

cycles. Therefore, the total latency of an SC-list decoder is
clock cycles.
SSC-list decoding has lower latency, but it is dependent on the location of frozen bits (the code construction parameters) in addition to the code length and rate. The latency of an SSC-list in clock cycles is the sum of the latency of all sub-codes in the pruned code graph:

where is the length of sub-code i, is the number of cycles required to calculate the sub-decoder’s input, and is the latency due to sorting and pipelining in the sub-code decoder.
 depends on the type of sub-code:
· It is 0 if the sub-code will not be directly decoder, i.e. if the decoder will perform an F or a G function.
· It is the latency of a 2L-input sorting network for rate-1 sub-codes in Polar-A.
· It is the latency of a 4L-input sorting network for rate-1 sub-codes in Polar-B.
· It is the latency of a 2L-input sorting network for repetition codes.
· It varies based on sub-code length and rate for ML decoding in Polar-A [2].

For N= 9000, K = 8000, L = 16, P = 256, and a code constructed for the AWGN with BPSK modulation and noise variance , the latency (in clock cycles) is
	
	SC-List
	Polar-A
	Polar-B

	Latency (cycles)
	41528
	1786
	2319

Sliding window and parallel for Turbo (account for memory)
Each radix-4 SISO decoder requires K/2 cycles to perform half a decoding iteration, resulting in a latency of KI cycles, where I is the number of full iterations. However, since the decoder implements W sliding window decoders operating in parallel, the latency decreases to cycles per codeword.
Summary
	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Latency (cycles)
	
	
	
	

	Info. T/P (bps)
	
	
	
	

Example
· For N= 9000, K = 8000, L = 16, P = 256, ILDPC = 7, Zmax = 384, W = 8, ITurbo = 5.5.

	
	LDPC
	Polar-A
	Polar-B
	Turbo

	Latency (cycles)
	658
	1786
	2319
	5500

	Info. T/P (bps)
	
	
	
	

· Polar-A will have a lower clock frequency than Polar-B and both will have lower frequency than the turbo and serial LPDC decoder implementations.

Here we see the LDPC decoder is more than twice as fast as the polar decoder and eight times faster than the turbo decoder.
Proposal 2: For the same flexibility assumption across all EMBB coding candidates, LDPC provides the most favorable decoding latency and throughput scaling for a given area.
Based on error-correction performance, the memory and logic implementation complexity, and decoding speed, we come to the following conclusion.
Proposal 3: LDPC should be selected for eMBB data channel to provide performance and implementation advantages at high rate and large blocklength.
Energy Efficiency
The computational complexity per information was presented previously in terms of computations per information bit [6]. There it was reported that generally LDPC and Polar showed advantages over the rate-compatible punctured Turbo codes in LTE. In a sense, the benefits came from the fact that at higher rates the Turbo encoder would puncture bits and the decoder would spend the computation to recover these, while in the LDPC and Polar cases the codes were natively operating at the higher rate and thus more efficient in the computations among actual transmitted bits.
It is important to note that such metrics, although insightful when comparing decoding algorithms, may not accurately reflect the overall energy efficiency. This is because computation is not the only contributor to power consumption. Memory elements generally consume power just to maintain state, and then memory accesses may further consume power; these are two aspects which are not captured in the analysis of [6]. Moreover, larger areas may have additional concerns with clock distribution, leakage currents, and other aspects which are not considered.
Generally, however, some aspects which show benefits in [6], as well as the results here regarding implementation area, can translate into energy efficient benefits. So it can be a reasonable guiding principle for the best coding candidate to be competitive or better in all metrics.
Conclusions
Proposal 1: For the same flexibility assumption across all EMBB coding candidates, LDPC provides the most efficient implementation area.
Proposal 2: For the same flexibility assumption across all EMBB coding candidates, LDPC provides the most favorable decoding latency and throughput scaling for a given area.
Proposal 3: LDPC should be selected for eMBB data channel to provide performance and implementation advantages at high rate and large blocklength.
References
[1] RAN1 84b Chairman’s Notes
[2] Lin et al, “A High Throughput List Decoder Architecture for Polar Codes,” T-VLSI, Vol 24, No. 6, Jun. 2016.
[3] Wei et al, “Algorithms of Finding the First Two Minimum Values and Their Hardware Implementation,” in IEEE T-CAS-I, Vol 55, No. 11, Dec. 2008.
[4] “Channel coding evaluation assumptions - performance and complexity”, R1-164704, Qualcomm Incorporated, RAN1 85, Nanjing China
[5] Studer et al, "Design and Implementation of a Parallel Turbo-Decoder ASIC for 3GPP-LTE," in IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 8-17, Jan. 2011.
[6] “Channel coding evaluation assumptions - performance and complexity”, R1-164704, Qualcomm Incorporated, RAN1 85, Nanjing China
[bookmark: Source]
SNR to Achieve BLER=1% for 64-QAM R=8/9

Polar (R1-164377)	100	400	1000	2000	4000	6000	8000	18.969987279362623	18.769987279362624	18.519987279362624	18.519987279362624	18.369987279362622	Turbo (R1-164186)	104	400	1008	2016	4032	6144	21.8	19.75	19.75	18.899999999999999	18.850000000000001	18.850000000000001	LDPC (R1-164698)	96	416	1024	2048	4096	6144	8192	21.19	19.649999999999999	18.97	18.61	18.350000000000001	18.2	18.11	Info Blocklength

SNR

SNR to Achieve BLER=1% for QPSK R=1/5

Polar (R1-164377)	100	400	1000	2000	4000	6000	8000	-2.7294000867203758	-3.2294000867203758	-3.4794000867203758	-3.679400086720376	-3.7794000867203756	-3.8794000867203757	-3.929400086720376	LDPC (R1-164698)	99	396	864	1728	3456	5760	6912	-2.2000000000000002	-3.3	-3.7	-3.9	-4	-4.0999999999999996	-4.0999999999999996	Turbo (R1-164358)	100	200	400	1000	2000	4000	8192	-2.3794000867203757	-2.9794000867203758	-3.1294000867203757	-3.5794000867203759	-3.679400086720376	-3.7294000867203758	-3.8794000867203757	Info Blocklength

SNR

4/10
