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Introduction
As pointed out in TR36.814 (Section A.2.1.6) [2], and in the text proposal [1] from Fraunhofer IIS, the transformation of antenna field patterns 
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 as calculated in the Local Coordinate System (LCS) (referenced to the antenna array) to the values 
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 in the Global Coordinate System (GCS) (where they are applied to construct the SCM impulse response) requires a rotation of the of the 
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 fields by an angle denoted 
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.  This rotation is non-trivial whenever the LCS orientation z-axis is tilted off of the GCS z-axis.  Tilt occurs due to both in mechanical tilt of the base station array and in random orientation at the UE.
The computations (as detailed in [1], [2] and [3]) are substantially more complex than in the 2D simulation case (where one need only subtract the departure/arrival and array orientation azimuth angles).  In principle, these computations must be performed for each ray, of each cluster, of each Tx/Rx antenna element pair (of the MIMO matrix), for each link in the simulation.  Thus, computational efficiency is an issue to be considered.
The purpose of this contribution is to support the mandatory inclusion of the field rotation and the proposed text of [1] by addressing the computation issue.  As an “existence proof” we present an algorithm that largely mitigates this issue.

The principle of the algorithm is straightforward.  Since rays have an angular deviation from the cluster mean of only a few degrees RMS, we propose the use of a 1st order Taylor series to calculate the ray fields (and Doppler) relative to the cluster average values.  The heavy lifting of the GCS(LCS(GCS transformation calculations need only be done once per cluster.  The ‘per ray’ calculations are linear, and hence, quickly executed on a computer.

The next section summarizes the exact procedure (as described in [1]).  Then we present the perturbation algorithm for calculation of the MIMO impulse response.  Three appendices provide, respectively, the derivation of the algorithm, details on a modified version of the algorithm that addresses a certain singularity, and a numerical validation of the accuracy of the algorithm.  The numerical validation results find that the RMS errors are less than 2( for ray perturbation angular magnitudes up to 17( relative to the cluster angles.
Field Calculation and Transformation from LCS to GCS
Polar Coordinate Transformation
This section summarizes the method of [1].
Define the following polar unit vectors:



[image: image5.wmf]sin()cos()

sin()sin()

cos()

r

qj

qj

q

éù

êú

=

êú

êú

ëû

e

 ,  
[image: image6.wmf]sin()

cos()

0

j

j

j

-

éù

êú

=

êú

êú

ëû

e

,   
[image: image7.wmf]cos()

sin()

0

j

j

j

^

éù

êú

=

êú

êú

ëû

e

   and   
[image: image8.wmf]cos()cos()

cos()sin()

sin()

q

qj

qj

q

éù

êú

=

êú

êú

-

ëû

e

.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (1)


[image: image9.wmf]r

e

, 
[image: image10.wmf]j

e

 and 
[image: image11.wmf]q

e

are the orthogonal unit vectors shown in Figure 1.  
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(not shown in Figure 1), which is used in the perturbation algorithm, lies in the 
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Figure 1:  Coordinate systems.

We adopt the notation of TR 36.814 Section A.2.1.6 where the GCS coordinates are un-primed and LCS coordinates are primed.  The transformation from LCS to GCS is the rotation 
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 is the antenna pointing azimuth and 
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 is the antenna down-tilt.  (
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 = 0 corresponds to a bore-sight on the horizontal plane, and 
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 > 0 means the bore-sight point below the horizontal plane.)  Thus, the LCS ( GCS transformation is
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where
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The procedure described in [1] is summarized in the following steps:
1. From the GCS departure/arrival direction 
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 calculate the unit vectors 
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.
2. Calculate the LCS radial unit vector 
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3. Calculate the LCS polar coordinates 
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4. Calculate 
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6. Calculate the fields 
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 in LCS via the antenna model, and then transform to GCS via the rotation


[image: image37.wmf](,)(,)

cos()sin()

(,)

(,)(,)

sin()cos()

(,)

FF

FF

qq

jj

qjqj

yy

qj

qjqj

yy

qj

¢¢¢

-

éùéù

éù

==

êúêú

êú

¢¢¢

ëû

ëûëû

¢¢¢

=

F

F

14243

 .
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (4)

Note that while 
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in step 2, in general, 
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Perturbation Algorithm for Calculation of the SCM MIMO Impulse Response

For the purpose of this presentation, it is useful to decompose the impulse response equation (equation (5) in TR 36.814, Appendix B) into several component parts.  The MIMO impulse response is
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where 
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 is the cluster delay, and the cluster response is the sum over rays
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The ray Doppler shift is
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where 
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 and the UE velocity 
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 are in GCS, 
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 is the carrier wavelength, and the added superscript A indicates direction of arrival.  Likewise, a superscript D will denote departure quantities, but we use these superscripts only where necessary.  The component of the constant matrix 
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 for Tx antenna element s and Rx antenna element u is
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where 
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 is the “phased” field vector in GCS (as in (4)

).  The “phased” field in LCS is
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where
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is the LCS displacement vector of antenna element u.  Notice that the impulse response coefficient (9)

 is an LCS calculation.(8)

 is a GCS calculation, while the array phase in 
The ray directions of departure or arrival are defined by the GCS angular perturbations
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In the following algorithm, it is understood that the field calculations are to be performed for both departure and arrival sides of 
(8)

; however, we omit the  GOTOBUTTON ZEqnNum362295  \* MERGEFORMAT  notation and use only one array element index u.  It is also understood that the ray perturbations 
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are different between departure and arrival sides, but we don’t obfuscate the notation with these details.
Once per cluster (n):
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4. Calculate the LCS polar coordinates 
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Calculate once per ray per cluster (n,m):

6. Calculate the LCS ray angles
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where the LCS perturbation is
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7. Calculate the LCS ray unit vectors
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and
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8. Calculate the transformed GCS ray unit vectors
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and
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9. Calculate ray field rotation:  
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10. Calculate each unique (across antenna elements) un-phase fields 
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Calculate once per array element, per ray, per cluster (n,m,u):

11. Calculate the phased GCS fields as
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12. Calculate the arrival GCS ray radial vector as
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.
Note 1:  It is appropriate to include the array phase in step 11 as the array phase is evaluated in the LCS coordinates.  This is the only place we used 
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Note 2:  The transformation
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 is ray angle perturbations (hence the subscript AP) from GCS to LCS coordinates as in  GOTOBUTTON ZEqnNum563412  \* MERGEFORMAT  (no tilt), it can be shown that 
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Note 3:  Usually we restrict 
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, the result is corrected accordingly.
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 can produce a result that violates these restrictions.  It is understood that when range violation occurs in 
Note 4:  Clearly formula 
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 is singular when  GOTOBUTTON ZEqnNum563412  \* MERGEFORMAT  ( 
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.  This corresponds to the case that the cluster direction happens to aligns with the LCS 
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-axis.  This singularity occurs because small angular perturbations in GCS map to large or even undefined perturbations in LCS.  For a base station array, it is unlikely that this condition would ever occur; however, the same cannot be said for the UE.  The following paragraph describes a modification of the above algorithm that eliminates this singularity issue.

Modified Algorithm:  Consider two possible antenna orientations 
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 for both orientation angles.  When a given cluster direction  GOTOBUTTON ZEqnNum648667  \* MERGEFORMAT  = 
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 use LCS1, otherwise use LCS2.  The trick to make this work is to realize that the fields calculated in LCS2 must be adjusted by the field calculation in LCS2 must be adjusted for both the 90 degree rotation and the field rotation of the LCS1(LCS2 transformation.  We provide these details in Appendix 2.
Conclusion

Proposal:  The FS-3D simulator model description text (in TR 36.873) should specify rotation of antenna field [1](4)

 (in the LCS(GCS transformation as indicated in  GOTOBUTTON ZEqnNum606448  \* MERGEFORMAT  and [2]) as mandatory.  The text should also indicate that the per ray calculations can be optionally be performed using a full 1st order Taylor series approximation as suggested in this contribution.  This algorithm can be either included as an appendix, or simply referenced back to the Tdoc.
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Appendix 1:  Derivation

Throughout we use the symbol ~ to mean only first order terms are included.  For example, 
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 because we neglect the 2nd order term 
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.  We also omit parts of the notation (like subscripts for array elements) at will whenever the meaning should be clear in context.
Perturbation Analysis of Tilt

We begin with the radial unit vector:
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 is seen to be equivalent to
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Applying the GCS(LCS transformation, we obtain (13)

:
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Which is equivalent to 
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 where (11)

 and  GOTOBUTTON ZEqnNum121924  \* MERGEFORMAT  is the 
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The Field Rotation
Recall that 
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The above display is the same as (14)

.

Note: 
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Next,
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and applying the GCS(LCS transformation yields (15)

.  Finally,
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and applying the GCS(LCS transformation yields (16)

.

Appendix 2:  Field Calculation in LCS2
This appendix provides details for implementation of the modified algorithm described after Note 4.  In the following, the primed values are LCS1 quantities (as above).  LCS2 quantities are indicated with a double prime.  The field (and gain) models are specified as 
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 in LCS1.  When the modified algorithm chooses to do computations in LCS2, then it calculates 
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 is the rotation from LCS2 to GCS.  Thus, we need to determine the relationship between the LCS2 fields 
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The transformation from LCS2 to LCS1 is a 90( up-tilt (
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(The LCS1 vector 
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(Keep in mind that the LCS2 double-primed variables are playing the role of the un-primed variables here.)  From 
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Next, using (1)

, evaluate
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Thus,
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and
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Thus, given 
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This is an unfortunately complex computation.  However, and efficient (and flexible) way to evaluate fields is via interpolation from a look-up table (LUT).  The computation described here can be used to calculate a 2nd LUT to be used for LCS2.  This is a one-time calculation that does not depend on antenna orientation, so the computational cost is negligible.
Appendix 3:  Numerical Error Analysis and Validation

Here we present results of a Monte Carlo error analysis.  First we set the GCS antenna tilt 
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 = 0, 15, 30, 45, 60, 75 and 90 deg.  The results were invariant with respect to antenna azimuth, and flipping of elevation.  Cluster angles 
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.  The goal was to investigate the magnitude of error as a function of the magnitude of the angular perturbation.  For fixed values of the perturbation magnitude 
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, perturbations were generated as 
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 is uniformly distributed on 
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.  (Of course, in the actual simulation model, the elevation perturbations would be much smaller than the azimuth perturbations – this is just an overly aggressive test model.)  The Monte Carlo procedure was: for each antenna orientation and fixed value of perturbation magnitude, generate 50,000 random cluster directions and perturbations and evaluate errors.
We consider two types of errors:  The absolute angle error of the LCS ray angles 
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denote, respectively, the true ray angles and the angles calculated via the perturbation algorithm.  Then
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Absolute angle error in LCS is important because the fields are first calculated in LCS from the specified field model.
Figures 2 show the statistical results of the Monte Carlo validation experiment.  Observe that the range of ray perturbation magnitude, up to 30(, is quite large, and yet the RMS errors are contained to just a few degrees.  In fact, the RMS errors are less than 2( for perturbation magnitudes up to 17(.
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Figure 2:  Results of Monte Carlo Validation Experiment.

The above validation was performed with the modified algorithm that chooses between LCS1 and LCS2 for each cluster.  This yields an algorithm that is fully robust with respect to antenna orientation, which is important for UE modelling.  As noted previously, the non-modified version of the algorithm is sufficient for BS modelling where array down-tilt is restricted to just a few degrees.  The LCS1 only algorithm produces zero error for 
[image: image178.wmf]0
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, so the RMS errors shown here for that case are due to uses of LCS2.  The difference is the accuracy penalty incurred to robustness near the singularity.
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