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Introduction
In the RAN1#74bis meeting, the agreements for the Phase-2 calibration were the following [1]:
· Phase-2 calibration details
· BS antenna configuration:
· Config 1: K=1, M=2, N=2, ULA, 0.5λ H/V  spacing
· Config 2: K=M=10, N=2, X-pol, 0.5λ H/V spacing with the antenna weights in the working assumption with θtilt = 12 degrees
· MS antenna configuration: 2 antennas with the same pol as BS
· System bandwidth: 10 MHz
· The following metrics for the serving cell are calibrated for each antenna configuration (collected over multiple runs)
· CDFs of ESD and ESA
· CDF of average wideband SINR before receiver (i.e., geometry) 
· CDF of largest (1st) singular value in PRBs at t=0
· CDF of smallest (2nd) singular value in PRBs at t=0
· CDF of the ratio between the largest singular value and the smallest singular value in PRBs at t=0
· Additional details 
· Dimension of the channel matrix: 
· 2 x (number of BS antenna ports)
· Singular value calculation
· Derived with channel matrices where antenna gain is applied but PL and shadowing are not modeled, 
· Singular values are calculated on a per PRB basis by 
· eig(∑HHH)/N , where the summation is across the PRB and N is number of subcarriers in the PRB
In this contribution, we provide the initial simulation results for the Phase-2 calibration according to the simulation assumptions agreed in the previous meetings. We also provide the other details of our simulation assumptions in the appendix.
[bookmark: OLE_LINK64][bookmark: OLE_LINK65]Discussion
It is clear that different parameters like as ESD, Mean of EoD will impact the distribution of EoD. In addition, the cell selection will be impacted when RSRP calculations base on UE attachment with all rays. Therefore, it is more preferable to provide the coupling loss CDF curves, as we have done in the following part, to calibrate the fast fading channel model both for antenna configuration 1(K=1,M=2,N=2,ULA,0.5λ H/V spacing) and configuration2(K=M=10, N=2, X-pol, 0.5λ H/V spacing with the antenna weights in the working assumption with θtilt = 12 degrees).
Basically, the distribution of ESD and ESA are not depended on antenna configuration, i.e. the CDFs of ESD and ESA should be overlapped completely for antenna config.1 and antenna config.2 since the ESD is a log normal distribution and mean of ESD is depended on UE height, 2D distance between UE and eNB. However, the cell selection for UEs has marginal difference for the two configurations since different antenna configuration may lead to different RSRP calculation when UE attachment method based on all rays is used. That explains why the marginal gap of ESD distribution between the two antenna configuration as shown in Figure 3 and Figure 8.
Since co-polarization is used both for antennas of eNB and UE in config.1, but config.2 is assumed with cross polarized antennas, the different configuration lead that the relation of antennas is smaller in config.1 than one of config.2. Therefore, rank 1 is selected more frequently in config.1. In contrast, there are more rank 2 selection in config.2 from statistical scheduling results. As shown in the Figure 4 and Figure 9 for scenario UMa and UMi respectively, the difference between the first singular value and the second singular value for antenna config.1 is larger than that of config.2. The larger singular value represent more power in the corresponding eigen-vector. By eigen-decomposition of the channel matrix, the larger difference of the two eigen-values represents larger antenna correlation. Therefore, the phenomenon in the Figure is identical with our analysis.
UMa Scenario
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Figure 1 CDF of coupling loss distribution for UMa

[image: C:\Users\2171490101502\AppData\Local\Microsoft\Windows\Temporary Internet Files\Content.Outlook\MGGS9BE3\Go (4).jpg]
Figure 2 CDF of geometry distribution for UMa
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Figure 3 CDF of ESD and ESA for UMa
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Figure 4 CDF of sv(singular value) in PRBs at t=0 for UMa
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Figure 5 CDF of ratio between the largest singular value and the smallest singular value in PRBs at t=0 for UMa

UMi Scenario
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Figure 6 CDF of coupling loss distribution for UMi
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Figure 7 CDF of geometry distribution for UMi
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Figure 8 CDF of ESD and ESA for UMi
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Figure 9 CDF of sv(singular value) in PRBs at t=0 for UMi
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Figure 10 CDF of ratio between the largest singular value and the smallest singular value in PRBs at t=0 for UMi
Conclusion
In this contribution, we provided the initial simulation results for the Phase-2 calibration based on some assumptions listed in the appendix.  
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Appendix
Shadow fading[1]:
	Shadow fading std[dB]
	LOS
	NLOS
	O-to-I

	3D UMa
	4
	6
	7

	3D UMi
	3
	4
	7



[image: ]
Cell selection:
· For RSRP calculations needed for UE attachment (including coupling loss calculations), all rays of all clusters shall be used for a given link between a UE and a transmission point

,
ESD[2]:  log-normal parameters µ and σ for 3D-UMa and 3D-UMi.    
	UMa
NLOS2I case can be given by µ =max[-1,-1.6(d2D/1000)+0.57+0.008(hUT)]
LOS2I case can be given by µ = max[-1,-1.35(d2D /1000)+0.43+0.008(hUT)]
as σ=0.71 for NLOS2I and σ=0.38 for LOS2I cases respectively. 
	UMi
NLOS2I case can be given by µ = max[-1,-2.3(d2D/1000)+0.78+0.02(hUT)],
LOS2I case can be given by µ =max[-1,-1.6(d2D /1000)+0.64+0.02(hUT)]
σ=1.4 for NLOS2I and σ=0.38 for LOS2I cases respectively.
median EOD or EOD offset [3]:
	UMa

LoS:  


NLoS: where
UMi

LoS: 


NLoS:  where 
Other Working assumption:
· for EOD
· 
PAS step: 
· Generation of EOD[image: ]
· Xn~ uniform distribution to the discrete set of {1,–1}
· Yn ~ N(0,σEoD/7)
· W ~ N(0, σEoD-offset)
· 
Generation of rays within a cluster
· Reuse Table B.1.2.2.1-2 (cEoD TBD)
· Number of clusters and number of rays per cluster as in 36.814
· FFS how to restrict the value within a valid range
· EOA
· PAS step: [image: ]
· 
Generation of EOA: 
· Xn~ uniform distribution to the discrete set of {1,–1}
· Yn ~ N(0,σEoA/7)
· [image: ]= 900 zenith for indoor users, LOS EOA for outdoor UEs
· 
Generation of rays within a cluster: 
· Reuse Table B.1.2.2.1-2 (cEoA TBD)
· Number of clusters and number of rays per cluster as in 36.814
· FFS how to restrict the value within a valid range

· 
Set equal random initial phase for both VV and HH polarizations in the LOS case, i.e., . 
· Decomposition of cross polarization follows A.2.1.6.1 of 36.814
· Other parameters based on parameters of winner+.
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