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1. Introduction
In this contribution, we provide a physical layer abstraction for turbo Codeword Interference Cancellation receivers. This physical layer abstraction is an enabling tool for the problem of link adaptation in closed-loop multiple-input multiple-output antenna systems with non-linear turbo receivers performing iterative linear minimum mean-square error (soft) interference cancellation (LMMSE-IC) and turbo decoding [1]. It can also be used as a L2S model for the system level evaluation of this class of receivers in future contributions.
This contribution complements the ones presented in [2] [3] in two very important aspects: (i) the fine tuning of the prediction method relying on MCS dependent calibration factors, (ii) the taking into account of a turbo-encoded MCS family. Note that we are not fully compliant with the standard in some aspects, since it is still a work on a research phase. However, we think that we have captured the main concepts/parameters of the LTE closed loop Single User MIMO schemes. In the following, we depict our physical layer abstraction for one codeword transmission over several spatial layers since the general case of multiple codewords follows the same line as described in [2] [3].

The contribution is organized as follows: In Section II, we describe the system model. In Section III, we review several types of iterative LMMSE-IC algorithms highlighting their similarities and differences. In Section IV, we analyze the evolution of the most efficient of such receivers building upon previous work on advanced PHY layer modeling. Numerical results are given in Section V to validate the approach. Section VI concludes the contribution.
2.  System model

We consider a single-user transmission over a MIMO block Rayleigh fading AWGN channel with 
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 receive antennas. Partial state information is assumed at the transmitter through a low rate feedback. Perfect channel state information is assumed at the receiver. The total number 
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 of channel uses available for transmission is fixed and the number of channel uses per fading block is given as 
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2.1 Coding strategy

Under limited feedback, only a finite number of transmission schemes are available at the transmitter side, i.e., a finite set of MCS and a finite set of spatial precoders. Let 
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 be the set of MCS indices and 
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 the set of spatial precoders. An MCS indexed by 
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 is a space-time bit-interleaved coded modulation (STBICM), specified by a linear binary block code 
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 (bits/complex dimension). By convention, MCS are indexed in increasing order of the rates, i.e., the MCS no. 1 has the lowest rate, and the MCS no. 
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 the highest. Antenna selection is used as a simple form of spatial precoding. A spatial precoder indexed by 
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 antennas and is specified by a precoding matrix 
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 is the index set of selected antennas, then 
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 where 
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-dimensional vector with 
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 elsewhere. The encoding process for MCS 
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 and precoder 
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 is detailed. The vector of binary data (or information bits) 
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 enters a simple linear binary block (e.g., terminated convolutional) encoder 
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. Each integer entry can be decomposed into a sequence of 
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 bits. A Gray mapping 
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Figure  1: Link adaptation -- STBICM with spatial precoding (antenna selection)

2.2 Received signal model
Let 
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 denotes the precoded channel for the b-th fading block. The discrete-time vector 
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 In (1) GOTOBUTTON GrindEQequation1 
, the vectors 
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3. LMMSE-IC based turbo receivers

Within the class of LMMSE-IC based turbo receivers, we often distinguish between log extrinsic probability ratios (LEXTPR) based and log a posteriori probability ratios (LAPPR) based iterative LMMSE-IC algorithms. The two algorithms differ by the type of probabilistic information fed back by the decoder for soft interference regeneration and cancellation, namely LEXTPR or LAPPR on coded bits. Empirical evidence reveals that the LAPPR-based iterative LMMSE-IC algorithm can significantly outperform its LEXTPR-based counterpart for highly loaded multiantenna or multiuser systems. In such scenarios indeed, using LAPPR instead of LEXTPR leads to more reliable MMSE symbol estimates. This is due to the extra information gleaned from the equalization/detection process, which allows to cancel out more interference at each iteration. As a consequence, we intentionally focus on this particular class.

For the sake of simplicity, we derive the receiver for 
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3.1 Interference regeneration and cancellation

Prior to LMMSE estimation of the symbol 
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, we compute the conditional MMSE estimate of the interference, defined as 
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. This computation is intractable for useful signal components and noise samples are of course no more independent conditional on 
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A1 The pdf 
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A2 The pmf 
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 is given by 
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As a matter of fact, the assumptions (A1) and (A2) never hold even for an ideal interleaver of infinite depth. But we can still force them in all subsequent derivations. Under (A1), the MMSE estimate of the interference affecting the symbol 
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where 
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3.2 LMMSE estimation -- unconditional case
The optimization problem to solve can be formulated as follows: Find 
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 The outer expectation in (4) GOTOBUTTON GrindEQequation4 
 renders the (biased) LMMSE filter time-invariant given by 
[image: image89.wmf]1

;;;

=

btbtbt

-

fXx

(

(

(

 where 
[image: image90.wmf];;,

=

btbtl

éù

ëû

xx

((

E

 with 



[image: image91.wmf]*

;,;;\;,,\

;;,

=()|{}

btlblbltbtlDLEs

blbtl

s

éù

-L

ëû

s

xyy

((

E


 and where 
[image: image92.wmf];;,

=

btbtl

éù

ëû

XX

((

E

 with 



[image: image93.wmf]†

;,;;\;;\,\

;;,

=()()|{}.

btlblbltblbltDLEs

blbtl

éù

--L

ëû

s

Xyyyy

(

((

E


 The computation of 
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 evaluated under (A2). Using the matrix inversion lemma, we obtain the filter 
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where 
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In practical implementation, we make several assumptions over the covariance matrices 
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A3 Due to the particular structure of the MCS, the so-called equal variance assumption holds, which states that 
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where
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A4 
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 can be replaced by its empirical mean 
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assuming sufficiently large 
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. The assumption (A3) never holds even for an ideal interleaver of infinite depth, but forcing it induces no performance degradation.
3.3 Demapping and decoding
The estimate 
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Under (A1), (A2) and (A5) the conditional pdf 
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3.4 Message-passing schedule for turbo decoding
The set 
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 exchanging probabilistic information (log domain). The first BCJR decoder computes the LAPPRs on its own coded bits (information and parity bits) taking into account the available a priori information 
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 on systematic information bits stored from an earlier activation (i.e., the most recent LEXTPRs on systematic information bits delivered by the second BCJR decoder). Then the second BCJR decoder is activated and computes the LAPPRs on its own coded bits (information and parity bits) taking into account the available a priori information transmitted by the first BCJR decoder. The best schedule we have found is the following: one pass of equalizer followed by one pass of first BCJR decoder followed by one pass of second BCJR decoder. This completes one global iteration of the turbo receiver. Such a message-passing schedule provides much better results than the conventional one, i.e., a single pass of equalizer followed by an arbitrary number of turbo decoder iterations. The different steps of the algorithm are summarized in Fig. 2 for the 1-block fading case.
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Figure  2: Turbo receiver structure (adapted to STBICM with Gray labeling)
4 PHY-layer abstraction

An LMMSE-IC based turbo receiver turns out to be a complicated non-linear dynamical system. Our objective is to analyze its evolution as iterations progress. The proposed performance prediction method is semi-analytical and relies on ten Brink's stochastic approach of EXIT charts [5] GOTOBUTTON GrindEQbibitem5 
 particularly useful in understanding and measuring the dynamics of turbo processing. 

4.1 Transfer characteristics of LMMSE-IC

The LMMSE-IC part of the receiver ends up with 
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 independent parallel channels under (A6). Each of them is modeled as a discrete-input AWGN channel under (A5) whose SNR, given by 
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 under (A1)-(A4), turns out to be a function 
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 The AMI 
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 is a monotone increasing, thus invertible, function of the SNR, and depends on the MCS index 
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4.2 Transfer characteristics of joint demapping and decoding

The functional module is MCS-dependent and comprises the following steps: demapping, deinterleaving, turbo decoding (one pass of the first BCJR decoder followed by one pass of the second BCJR decoder), reinterleaving, and computation of the mean and variance of transmitted symbols (as described before). The generated observed symbols are the output of a virtual AWGN channel with discrete input in 
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 [5] GOTOBUTTON GrindEQbibitem5 
. For an arbitrary labeling rule, trivariate transfer function is required to stochastically characterize the joint demapper and turbo decoder. With Gray labeling however, log a priori probability ratios on labeling bits do not intervene in the computation of the LEXTPR on the labeling bits (see (11) GOTOBUTTON GrindEQequation11 
) and, hence, need not be taken into account in the stochastic modeling of the demapper. Therefore, simpler bivariate transfer function is sufficient to stochastically characterize the joint demapper and turbo decoder for the latter proceeds iteratively. This is the major difference with previous work [2] GOTOBUTTON GrindEQbibitem2 
 [3] GOTOBUTTON GrindEQbibitem3 
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. They are computed off-line and stored in separate LUTs. It is necessary to emphasize that the LUTs are generated with channel use number fixed to 
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, thus are independent with the number of fading block. The algorithm used to generate the different LUTs is summarized in Algorithm 1.
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4.3 Evolution analysis
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This technique inherited from EXIT charts is widely used in practice and often referred to as Mutual Information Effective SNR Mapping (MIESM). In our framework, it relies on all the defined assumptions (A1)-(A6) or, equivalently, on (A5) and (A6) for the first iteration. The variance 
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 under (A4) for next iteration. Hence, the evolution of LAPPR-based iterative LMMSE-IC can be tracked through the single scalar parameter 
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4.4 Calibration
A major drawback of this performance prediction method is that the assumptions (A1), (A2) and (A3) do not hold for LAPPR-based iterative LMMSE-IC. As a consequence, not only the filters 
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 are approximated. The true SINRs, if we could have access to them, would be smaller. This fact explains why the prediction performance method expounded in [2] GOTOBUTTON GrindEQbibitem2 
 [3] GOTOBUTTON GrindEQbibitem3 
 yields too optimistic results compared to the true simulated performance. To solve this problem, we proposed in [7] GOTOBUTTON GrindEQbibitem7 
 a simple, yet effective, calibration procedure whose principle is to adjust 
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 minimizing the average relative error between the simulated BLER and the calibrated predicted BLER over a large number of channel outcomes at each iteration 
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. In order to ensure that the calibration factor cope with a large distribution of channel outcomes (or SINR distribution per block), we draw each channel outcome from a 2x2 MIMO 4-block Rayleigh fading AWGN channel. Exhaustive simulations revealed that 
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 depends on the MCS of the user being decoded but does not vary significantly w.r.t. the number of transmit and receive antennas as well as the channel characteristics. A recapitulative diagram of the method is depicted in Fig. 3 for the 1-block fading case. 
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Figure  3: Performance prediction method (with calibration)

5. Numerical results

The proposed physical layer abstraction method is tested over a 2x2 MIMO 4-block flat fading Rayleigh channel. The MCS are built from the LTE turbo-code based on two 8-state rate-1/2 recursive systematic convolutional (RSC) encoders with generator matrix G = [1; g1/g0] where g0 = [1011] and g1 = [1101] and QAM modulations (Gray labeling). LAPPR based iterative LMMSE-IC is performed at the destination. The schedule: one pass of equalizer followed by one pass of first BCJR decoder followed by one pass of second BCJR decoder. This completes one global iteration of the turbo receiver. We witnessed that 5 iterations are generally enough to ensure the convergence in practice.  

5.1 Single codeword (STBICM)
First,  the single codeword case is investigated. The total number of channel uses available for transmission is fixed to 2040. 
5.1.1 Open loop spatial mutiplexing

5.1.1.1 Average predicted vs. simulated BLER

Average simulated and predicted BLER over open loop MIMO are shown over several SNR.  For each SNR, we evaluated the average simulated BLER by Monte Carlo simulation which is stopped after 1000 block errors. The predicted BLER is evaluated over 10000 channel outcomes.  QPSK-1/2 and 16QAM-1/2 are chosen for the test whose optimal calibration factors are 1.7 and 3.3, resptectively. These calibration factors are used in the following predictions. The results for QPSK – ½ and 16QAM – ½ are shown in Figure 4 and Figure 5, respectively. We observe that the average predicted BLER match exactly the average simulated ones at every iterations. 
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Figure  4: Simulated vs. Predicted average BLER for QPSK-1/2 over 2x2, 4-block fading memoryless channel
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Figure  5: Simulated vs. Predicted average BLER for 16QAM-1/2 over 2x2, 4-block fading memoryless channel

5.1.1.2 Cloud of points per iteration

The instantaneous (conditional on a given channel outcome) simulated and predicted BLER for a large number of channel outcomes gives further insights into the accuracy of our prediction method.  We generate randomly 200 channels over several SNR. For each channel outcome, the simulation is activated only if its instantaneous predicted BLER is between 0.9 and 0.01 at the considered iteration.This helps to capture the region of interest [1, 0.01] for all iterations. For each channel outcome, Monte Carlo simulation is stopped after 100 block errors.  Then the predicted and simulated instantaneous BLER of this channel are plotted versus the effective SINR of the first iteration in the same figure. The results of iteration 1,2 and 5 for QPSK – ½ and 16QAM – ½ are shown in Figure 6 and Figure 7, respectively. We observe that the instantaneous predicted BLER match quite exactly the instantaneous simulated ones at all iterations.
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Figure  6: Simulated vs. Predicted instantaneous BLER for QPSK-1/2 over 2x2, 4-block fading memoryless channel
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Figure  7: Simulated vs. Predicted instantaneous BLER for 16QAM-1/2 over 2x2, 4-block fading memoryless channel

5.2 Dual codewords (Selective PARC) 

Second,  the dual codewords case is investigated. Here we consider either the natural or optimal ordering. In the natural ordering user 1 (or antenna 1) is decoded first then its interference is softly regenerated (from the turbo decoding output) and substracted to the received samples. Thus, user 2 benefits from the substraction of user 1 at the first iteration [2][3]. The process is repeated iteratively which gives the well known turbo-SIC scheduling.
The total number of channel uses available for transmission is fixed to 4080 to keep the same codeword length as the single codeword case.  Note that we consider the same average transmit Eb for the two users (Single User MIMO).
5.2.1 Open loop spatial multiplexing

Here we consider the natural ordering for turbo-SIC. Average simulated and predicted BLER over open loop MIMO are shown over several SNR.  Two different MCS are set on two antennas: user-1 (or antenna 1) QPSK-1/2 and user 2 (or antenna 2) 16QAM-1/2.  For each SNR, we evaluated the average simulated BLER by Monte Carlo simulation which is stopped after 1000 block errors for both codewords. The predicted BLER is evaluated over 10000 channel outcomes.  The results  are shown in Figure 8. We observe that the average predicted BLER match exactly the average simulated ones at every iterations. 
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Figure  8: Simulated vs. Predicted average BLER for dual codeword (QPSK-1/2 and 16QAM-1/2) transmission over 2x2, 4-block fading memoryless channel

5.2.2 Closed loop PARC with antenna selection

Here we consider a closed loop selective Per Antenna Rate Control system based on the turbo-encoded family with the associated calibration factors depicted below. 
	MCS #
	Modulation –Coding Rate
	 Calibration factor

	1
	QPSK-1/3
	1.7

	2
	QPSK-1/2
	2.0

	3
	QPSK-2/3
	2.5

	4
	QPSK-3/4
	2.7

	5
	QPSK-5/6
	3.7

	6
	16QAM-1/2
	3.3

	7
	16QAM-2/3
	6.5

	8
	16QAM-3/4
	9.5

	9
	16QAM-5/6
	17.0

	10
	64QAM-2/3
	12

	11
	64QAM-3/4
	22

	12
	64QAM-5/6
	34


Table  1: MCS family and the associated calibration factors. 

The receiver is the described turbo-SIC with optimal ordering. The Link adaptation algorithm optimizes the selection of the (antenna selection) precoding, the combination of the MCS(s) and the decoding order to reach the largest throughput under the constraint BLER of 0.1 for each chosen MCS at the last iteration. The channel is a 2x2 4-block flat Rayleigh fading channel. Over each SNR, the average predicted throughput is evaluated over  1000 channel realizations. For each channel outcome, Monte Carlo simulation is stopped after 100 block errors. The LMMSE benchmark corresponds to one pass of joint LMMSE followed by 8 iterations of turbo-decoding. The Genie Aided bound corresponds to perfect interference cancellation. The result is plotted in Figure 9.
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Figure  9: Predicted average throughput of the turbo-SIC receivers at iteration 1, 2, 3, 5, 8, simulated average throughput of the turbo-SIC receivers at iteration 1, 2, 3, the LMMSE reference and the Genie-Aided IC bound over 2x2, 4-block fading memoryless channel. 

6  Conclusion

In this contribution, we have proposed and validated by Monte Carlo simulations a physical layer abstraction for turbo-CWIC. This physical layer abstraction is an enabling tool for the problem of link adaptation in closed-loop multiple-input multiple-output antenna systems with non-linear turbo receivers performing iterative linear minimum mean-square error (soft) interference cancellation (LMMSE-IC) and turbo decoding. It can also be used as a L2S model for the system level evaluation of  this class of receivers in future contributions.
Proposal: Capture this L2S model for turbo CWIC in the TR36.866.
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