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1 Introduction

MU-MIMO dimensioning has been discussed in previous meeting [1-15]. In 59bis meeting, some decisions are made as follows:
For the design of downlink signalling and DM RS, the following is assumed for MU-MIMO:

· Not more than 4 UEs are co-scheduled 

· Note that the actual maximum number of co-scheduled UEs does not need to be specified.

· Not more than 2 layers per UE with 2 orthogonal DM RS ports

· Not more than 4-layer transmission in total for MU-MIMO transmission 

Two alternatives are to be studied:

· 4 orthogonal DM RS ports and 1 scrambling sequence are defined

· 2 orthogonal DM RS ports and 2 scrambling sequences are defined as in Rel-9

· FFS whether one or both alternatives will be specified (and if only one, which one).
· Note that in any case TM8 will remain specified in Rel-10. 

In this contribution, we evaluate the performance between above alternatives by system level simulation and show our views accordingly. 
2 Difference between 2 and 4 orthogonal DM RS
2.1 Rel-9 DM RS for MU-MIMO
The DM RS pattern for SU/MU MIMO in Rel-9 is shown in Fig.1.
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Fig. 1  DM RS for Rel-9
For Rel-9, 2 orthogonal DM RS ports and 2 scrambling sequences are defined. For single user transmission, the same scrambling sequence is used for two layers. And Walsh cover code w1= [1 1] and w2=[1  -1] are used as orthogonal code for two layers respectively. For MU-MIMO transmission, the scrambling sequence used for different users can be the same or different. The scrambling sequence is applied on per RE level after the orthogonal Walsh cover. When total rank/layers > 2, the orthogonality of the DM RS can’t be hold. And the scramble code can be used to distinguish the non-orthogonal DM RS. Therefore, at most 4 UE/ layers can be paired simultaneously.  Figure 2 gives an example of DM RS pattern when 3 and 4 layers transmission is used in MU-MIMO mode.
[image: image2.wmf]Scramble

code 

1

1

1

1

Layer 

1

Layer 

2

Layer 

3

1

-

1

1

Walsh Cover Code

}

Scramble

code  

0

Layer 

4

1

-

1

Scramble 

code 

1

}

1

1

1

Layer 

1

Layer 

2

Layer 

3

1

-

1

1

Walsh Cover Code

}

Scramble 

code  

0

}


Fig. 2 DM RS of 3 and 4 layers transmission for MU-MIMO
In Figure 2, 3 layers transmission is used for MU-MIMO mode. In figure 2, layer 1 and layer 2 use the same scramble sequence but different Walsh cover code. And layer 3 uses another scramble sequence. For layer 1 DMRS, the interference from layer 2 can be canceled by orthogonal Walsh Cover Code. But the interference from layer 3 can only be mitigated by non-orthogonal scramble sequence. This will deteriorate channel estimation comparing with orthogonal DMRS port. The impact of channel estimation by non orthogonal DMRS is analyzed in Appendix 1.
2.2 4 orthogonal DM RS ports
An alternative for Rel-10 is 4 orthogonal DM RS ports for MU-MIMO as shown in Figure 3. For 4 orthogonal DM RS, there are two choices, one is DMRS pattern with OCC=4(Orthogonal Cover Code) and 12 REs overhead. The other one is DMRS pattern with OCC=2 and 24 REs overhead.  
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Fig. 3 orthogonal DM RS
3 System simulation
System level evaluations of orthogonal and non-orthogonal DMRS based MU-MIMO is given with assuming blind detection and IRC（interference rejection combining）receiver.  The results are given in Figure 4 and 5. Further more, the performance of MU-MIMO with orthogonal DMRS ports is evaluated by two alternatives: (1) DMRS pattern with 12 REs overhead and OCC=4; (2) DMRS pattern with 24 REs overhead and OCC=2. The simulation parameters can be found in appendix 2. 
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Fig. 4 comparison of orthogonal DM RS and non-orthogonal DM RS using cross-polarization 8×2 setup 
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Fig. 5 comparison of orthogonal DM RS and non-orthogonal DM RS using ULA 8×2 setup 

These simulation results show that the cell average throughput gain of orthogonal DM RS over that of non-orthogonal DM RS range from 10~15% with 12 REs DM RS, but it degrades if  24 REs DM RS with OCC=2 is used because of larger overhead of the resource occupied by the DMRS.
4 Conclusions
In this contribution, the performance impact of orthogonal and non-orthogonal DM RS is evaluated. It is found that there is about 10%-15% gain of orthogonal DM RS over that of non-orthogonal DM RS. From the simulations, we propose 

· Using orthogonal DM RS in  rank > 2 MU-MIMO transmission

· Using 12 REs DM RS with OCC=4 for MU-MIMO
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Appendix 1. Modelling channel estimation error introduced by non-orthogonal DMRS
In this section, an example of rank 3 transmissions, which is shown in Figure 2, is given to model the channel estimation error introduced by non-orthogonal DM RS. One paired UE is allocated one layer in the following analysis. Figure 6 gives an example of the combination effect of orthogonal cover code([1 -1]) and scrambling code. Figure 7 shows the channel in different DM RS subcarriers. In Figure 7, 
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 is the channel of the jth user in ith DM RS subcarrier index.
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Fig. 6 combination of DMRS and OCC                                    Fig. 7 channel of DM RS subcarrier
In Figure 6, 
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(k =0,1 represents the scramble code index; i=1 to 12 represents the DM RS subcarrier index ) represents the DM RS in a PRB. When layer = 3 transmission as shown in Figure 2 is used,  the actual DM RS sequences for layer 1 to layer 3 are shown in Table 1.

Table 1 an example of DMRS of rank 3 transmission for MU MIMO
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Let layer 1 is scheduled to UE1, layer 2 to UE2 and layer 3 to UE 3. For UE1, channel matrix of DM RS in ith index is represented as
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, where subscript denotes UE index/layer index and superscript denotes the index of DM RS subcarrier. Then the receiving of ith DM RS is as follow:


[image: image49.wmf]1

1111221331

iiiiiiii

yHwcHwcHwcn

=+++

            (1≤i≤12)                                                                            (1)

Where wi is the precoding vector for UE i/layer i. 
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 is noise in ith subcarrier . To simplify the analysis of channel estimation impact of non-orthogonal DM RS , 
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 is neglected in the following. In low speed scenario, the channel of 
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 shown in Figure 7(i is odd number) is virtually the same as 
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.  Then after de-scrambling, the receiving signal is expressed as 
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Where 
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 is the OCC code for UE j / layer j.  And 
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 across all i  for UE1 and UE 3 in Figure 2. And for UE2/ layer 2, 
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Then after de-spreading of OCC, equation (2) becomes
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Sum 
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Where the last equation follows with the assumption that
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Then after de-spreading, the interference from the UE using same scrambling code is cancelled. For Non orthogonal DMRS, the interference can only be smoothed by de-scrambling. In this case, sum 
[image: image64.wmf]1

i

x

from 
[image: image65.wmf]1

1

x

 to 
[image: image66.wmf]12

1

x

.


[image: image67.wmf](

)

1212111212

1

111121213011113

111,3,5,7,9,1111

12

i

j

iiiiiii

iiiii

xHwHwHwHwaaHwHwe

b

*

+

=====

æö

=+-+=+

ç÷

èø

ååååå

             (5)

Where the last equation follows the assumption 
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From (5), the estimated channel can be modelled as 
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Where 
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 is the ideal channel for UE1, and  
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 is the channel estimation error due to non orthogonal DM RS.   The error term 
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 in equation (6) can be seen as a channel estimation error lower bound because no noise and frequency/time selectivity of channel are considered. For UE1, the estimated channel for layer 2 and layer 3 are as follows 
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At receiver side, the receiver signal at UE1 is 
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Where s1, s2, s3 is the transmit symbol from UE1/layer 1 to UE3/layer 3. n1 is the noise with covariance matrix 
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The MMSE-IRC receiver weighting vector for UE1 is
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The optimal weight vector with idea channel is 
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Where  
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The signal at the receiver combiner output is 
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Where 
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.   In (12), the first term is the desired signal part. The second term is seen as the interference caused by channel estimation error. The third term is residual intra-layer interference plus noise.

Then the average power of first term is 
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Where the equation with the assumption that 
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The average power of second term is 
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Let us assume that 
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Where third line of the equation (14) follows the assumption
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From above analyses, The SINR of MMSE-IRC receiver considered the channel estimation error can be expressed as
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where M is the total rank/layers. And M = 3 is assumed in our example.
Appendix 2.  System simulation parameters
	Parameter
	Assumption

	Cellular Layout
	 19 sites, 3 sectors per site

	Simulation scenarios
	Case1 in TR25.814

	Load
	Average 10 UE per sector

	Bandwidth
	10MHz

	Channel model
	SCM

	UE speeds of interest
	3km/h

	antenna configuration
	8×2, cross-polarization  and ULA antenna,  

BS:0.5 Lambda  MS:0.5 Lambda

	Codebook size
	4bits [16]

	Traffic model
	Full buffer

	Scheduler
	Proportional Fair

	Channel  estimation
	Ideal, but the channel estimation error due to Non-orthogonal DM RS are modelled

	MU-MIMO
	Maximum paired MU-MIMO user number is 4, and one layer per user 

	Subband size
	5 RB

	HARQ
	Maximum 4 transmission 

	Transmitter precoding algorithm
	ZFBF(Zero forcing beamforming) 

	Receiver algorithm
	MMSE-IRC/Blind detection enable 

	Overheads 
	3 OPFM sysmbols for control channel, 4 CRS ports, 12 REs for DM RS or 24 REs for DM RS
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