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1. Introduction

The downlink (DL) CoMP transmission schemes that are used in, for example, [1] to fulfill the IMT-Advanced requirements rely on the availability of downlink channel state information (CSI) at the eNodeB. Depending on the scheme the CSI requirements differ; herein, we discuss the feasibility of feedback overhead for

1. Downlink Spatial Channel Covariance information, required by the coordinated BF scheme in [1] 
Regarding the statistical channel information, it is well known that channel covariance changes much more slowly than the coherence time and bandwidth of the channel; that is, a covariance matrix that is valid on, for example, an uplink frequency band, is valid also in a downlink frequency band—given that the duplex distance, relative the carrier frequency, is sufficiently small. Hence, if an eNodeB measures the spatial channel covariance matrix for a particular UE on uplink transmissions, the above frequency translation property and reciprocity states that the same covariance can be used in the downlink signal processing
. 

2. Using Reciprocity to Evaluate the DL Spatial Channel Covariance Matrix
The DL channel covariance matrix at an eNodeB can be expressed as 
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where
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 is the ray power density at direction of departure angle
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, and 
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 is the antenna array response (steering vector). For a uniform linear array (ULA) with isotropic antennas, the antenna array response in direction 
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 is given by
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where d is the antenna separation [in meters], 
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is the wavelength of the carrier [in meters], and N the number of array antennas. It can be observed that a small change in 
[image: image8.wmf]l

, relative the antenna spacing (i.e., a small change in carrier frequency relative the carrier frequency the array was designed for) will only result in a small perturbation of the array response.  Note that a ULA is assumed in the evaluation of coordinated beamforming in [1]. If the ULA is designed for the carrier frequency
[image: image9.wmf]0
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, with an antenna spacing of
[image: image10.wmf]D

wavelengths (at that frequency), the array response in the uplink and downlink is obtained as
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where 
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 and 
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are the downlink and uplink carrier frequencies respectively.  If the duplex distance is sufficiently small relative the carrier frequency, it therefore holds that
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. Moreover, the reciprocity of the electromagnetic propagation channel ensures that uplink and downlink ray power densities are approximately the same,
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for reasonable duplex distances. It follows from Equation (1) that, the uplink and downlink spatial covariance matrices are approximately the same,
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for sufficiently small duplex distances. A similar argument can be made for other, than ULA, antenna configurations.

For larger duplex distances, it may be necessary to apply a frequency transformation to better estimate the downlink covariance matrix based on uplink measurements. Note, for instance, that 
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where 
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 is the diagonal transformation matrix,
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By for instance estimating the dominating direction of arrival (DOA) in the uplink, 
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J

, an improved downlink covariance estimate may be obtained as
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(3)
More robust frequency translation methods, taking more than one incident angle into account, can for instance be found in [2].

3. Evaluation of UL to DL Estimation Error
In the evaluation we consider an 8 antenna ULA with half wavelength antenna spacing, as in the coordinated beamforming scheme in [1]. In the evaluation we assume a Gaussian ray power density,
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, for different angular spreads (standard deviations) about the direction to the UE, 
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. The FDD E-UTRA frequency bands [3] all have a duplex distance less than 10% of the carrier frequency. The 2GHz and 2.5GHz band used in the IMT-Advanced evaluation have duplex distance 5% and 10%, respectively. For the evaluation, we use the worst case scenario of 10% duplex distance, relative the carrier frequency. To improve the UL/DL transformation, we use the simple transformation given in Equation (3), even though the performance could be further improved by using a more advanced transformation, as in [2]. 
The performance was evaluated using 16 fixed beams, 
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evenly spaced between ±90 degrees. It was shown that the relative estimation error satisfied  
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for angular spreads (standard deviations) ranging from 0 to as large as 30 degrees. That is, regardless of the direction of the UE, the power estimation error of each beam is less than -10dB, relative the gain to a UE in the “best” direction of the beam.
An alternative measure is the estimated power difference. For angular spreads ranging from 0 to 30 degrees the power difference satisfied
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where 
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is the set of 
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satisfying 
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that is, 
[image: image31.wmf]k

Q

is the set of direction in which beam 
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radiates significant power.  In the relevant directions, the estimation error is thus less than 1.02 dB. 
4. Summary
Herein we have studied the feedback requirements of the IMT-Advanced fulfilling CoMP schemes evaluated in [1]. 
· The analysis indicates that the downlink spatial channel covariance matrix can be obtained at the eNodeB without additional standardization. The coordinated beamforming used to fulfill the ITU requirements in [1] can therefore be implemented with only small changes to the LTE rel-8 standard.
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� It is assumed that the eNodeB has calibrated antennas, and that the frequency DL/UL duplex distance, relative the carrier frequency, is sufficiently small.


� Note that it is assumed that the Rx and Tx chains of the eNodeB antenna array are calibrated.
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