
3GPP TSG RAN WG1 #53bis

 R1-082309
Warsaw, Poland, June 30 – July 4, 2008
Agenda item:
6.2
Source:
Samsung

Title:

ACK/NAK DTX Detection in the PUSCH
Document for:
Discussion and Decision
1 Introduction

Three methods have been previously suggested for ACK/NAK DTX detection in the PUSCH:

a) eNB performs 3-state hypothesis testing (ACK, NAK, DTX) using the assumed ACK/NAK resources

b) eNB uses 1 bit in DCI format 0 to indicate expected ACK/NAK transmission from the UE in the PUSCH [1]

c) UE masks the PUSCH data CRC if it includes ACK/NAK [2]
a. Similar to CRC-based UE antenna selection and semi-persistent versus dynamic scheduling.
The first method is self-sufficient but 3-state detection inevitably leads to worse performance. In order to achieve the required DTX-to-ACK error rate of 1% [3], the minimum ACK/NAK resources need to be substantially larger than required to achieve the ACK/NAK BER targets. For example, at 1 dB SINR, 24 symbols/slot are required for DTX detection error rate of 1% when just 2 symbols/slot would have been enough for ACK/NAK BER of 0.1% [1]. This is against the agreed formula linking the control resources to the data MCS in the PUSCH [4]. More importantly, such overhead increase is detrimental to UL throughput, particularly for PUSCH allocations over a small number of RBs which represent important LTE applications (e.g. VoIP). For example, for 1 RB allocation and accounting only for ACK/NAK and DM RS overhead, the total overhead becomes 57% (2 symbols/slot reserved for ACK/NAK) and it is even larger for SINRs below 1 dB. Such overhead is clearly unacceptable (and, for low SINRs, it cannot be supported by the current specifications placing ACK/NAK in only 2 symbols of each slot). The DTX detection error rate target can never be met [1] for the ACK/NAK resources from the agreed formula in [4]. Therefore, relying only on the allocated ACK/NAK resources to meet the reliability requirements of 3-state hypothesis testing is not a viable option.
The second method is applicable only for PUSCH transmissions associated with DCI format 0 (i.e. it may not be possible to use with retransmissions or with semi-persistent scheduling). Moreover, the 1 bit indicating expected ACK/NAK transmission in the PUSCH is typically wasted as its usefulness comes only when a DL scheduling assignment is missed (typically 1% probability) and the respective ACK/NAK transmission happens to be through (dynamically scheduled) PUSCH and not through PUCCH. Also, DTX detection is not provided; instead DTX is interpreted as NAK leading to throughput loss as IR cannot be applied and chase combining becomes default.
The third method is applicable only for initial PUSCH transmissions as the data CRC cannot be changed in retransmissions. Moreover, using the data CRC, the ACK/NAK/DTX decision cannot be made before the data is decoded which incurs an additional delay roughly equal to the turbo decoding delay. However, this may only be an issue with delay sensitive applications.
The advantages and shortcomings of the previous methods are summarized in Table 1. Based on these observations, candidate solutions are subsequently considered.

Table 1: Attributes of Methods for ACK/NAK DTX Detection in PUSCH.

	
	Based on A/N Resources

(Method 1)
	Indication in DCI Format 0 (Method 2)
	PUSCH CRC Masking

(Method 3)

	Advantages
	Conventional method no extra mechanism needed
	Eliminates DTX-to-ACK error (for dynamic scheduling)
	· Achieves DTX detection without extra overhead (initial PUSCH Tx)
· Does not require DCI format 0

	Disadvantages
	- Increased A/N overhead
- Not possible in practice
	- 1-bit in DCI format 0 wasteful
- DTX is mapped to NAK – no IR
- Requires DCI format 0
	- Useful only for initial transmissions
- Introduces extra delay (~0.5 msec)

2 Resolving ACK/NAK DTX Detection in PUSCH
As neither of the previous methods is capable of offering the desired ACK/NAK DTX detection functionality and performance, the attributes of combinations for these methods are considered in Table 2.
Table 2: Attributes of Methods for ACK/NAK DTX Detection in PUSCH.
	
	Method 1 and Method 2
	Method 1 and Method 3
	Method 1 and Method 2 and Method 3 [5]

	Advantages
	· No additional A/N overhead for PUSCH transmissions with DCI format 0
	· No additional A/N overhead for initial PUSCH transmissions
	· No additional A/N overhead for PUSCH transmissions with DCI format 0
· No additional A/N overhead for initial PUSCH transmissions

	Disadvantages
	· Additional A/N overhead for PUSCH transmissions without DCI format 0
· DTX detection may not be possible (dynamic scheduling)
· Wasteful 1-bit in format 0
	· Additional A/N overhead for PUSCH retransmissions
· Additional delay (~0.5 msec) for ACK/NAK detection in initial PUSCH transmission

	· Additional A/N overhead for PUSCH retransmissions without DCI format 0
· Additional delay for ACK/NAK detection in initial PUSCH transmission without DCI format 0
· Wasteful 1-bit in format 0

A first observation is that for any method, the ACK/NAK resources required to achieve the DTX detection error rate target (e.g. 1% [3]) in PUSCH retransmissions without DCI format 0 need to be above the ones required to achieve the ACK/NAK BER target and the formula in [4] may not apply.

A second observation is that when all three methods are combined [5], the desired functionality is effectively achieved and the significance of the corresponding disadvantages is drastically reduced:
a) Additional ACK/NAK overhead may only be needed for PUSCH retransmissions without DCI format 0 and not for all PUSCH transmissions (method 1) or for all PUSCH transmissions without DCI format 0 (method 2) and the impact on UL throughput is largely suppressed (e.g. 90% suppressed for initial BLER target of 10%)
b) DTX may be mapped to NAK only for PUSCH retransmissions with DCI format 0 (impact on DL throughput from inability to apply IR is suppressed)
c) ACK/NAK decision delay of method 3 need not affect delay-sensitive services (scheduling with DCI format 0)
Whether the ACK/NAK resources should increase for PUSCH retransmissions without DCI format 0 is now considered from an overall system perspective. Assuming that, on average for all UEs, ACK/NAK transmission is more likely in the PUCCH than in the PUSCH, a larger DTX detection error rate could be tolerated for the latter case. To illustrate this further, if the likelihood of ACK/NAK transmission in the PUSCH is 20% and in the PUCCH is 80%, a 1% DTX detection error rate in the PUCCH has the same system impact as a 4% DTX detection error rate in the PUSCH (upper bound for the worst case scenario of all PUSCH transmissions without DCI format 0). With initial PUSCH data transmission BLER of 20%, the DTX detection error rate using ACK/NAK resources needs to be only 20% which is practically achievable without additional overhead [1]. Therefore, a modification in the agreed formula [4] to introduce more ACK/NAK resources is not needed provided that data CRC masking applies in the initial data transmission depending on the ACK/NAK presence. Also, although not fundamentally needed, it appears feasible for the scheduler to easily avoid ACK/NAK transmission in PUSCH retransmissions without DCI format 0.
Based on the above analysis and referenced evaluation results, the combination of all three methods is adequate to meet the functionality and performance requirements for ACK/NAK DTX detection in the PUSCH without excessively increasing the associated overhead. It is therefore proposed that [5]:
a) one bit in DCI format 0 indicates ACK/NAK transmission in the PUSCH, and
b) the UE scrambles the data CRC with its ID when it transmits (non-DTX) ACK/NAK in the PUSCH

References:

[1] R1-081855, “Avoiding PUSCH Error Situations Caused by DL Allocation Grant Signaling Failure”, Nokia

[2] R1-081728, “ACK/NAK DTX Detection in the PUSCH”, Samsung

[3] TS 36.104 v.8.1.0
[4] RP-080457, “Formula for linkage between PUSCH MCS and amount of resources used for control”, Ericsson, et. al.

[5] R1-082097, “Way Forward on ACK/NAK DTX Detection in PUSCH”, Nokia, NSN, Samsung
3 Addendum to TS 36.212
5.2.2.2
Code block segmentation and code block CRC attachment
The bits input to the code block segmentation are denoted by
[image: image1.wmf]1

3

2

1

0

,...,

,

,

,

-

B

b

b

b

b

b

 where B is the number of bits in the transport block (including CRC).

Code block segmentation and code block CRC attachment are performed according to subclause 5.1.2.

The bits after code block segmentation are denoted by
[image: image2.wmf](

)

1

3

2

1

0

,...,

,

,

,

-

r

K

r

r

r

r

r

c

c

c

c

c

, where r is the code block number and Kr is the number of bits for code block number r.
When HARQ-ACK is transmitted in the PUSCH and the UL HARQ process is the initial one, the 16 last CRC bits
[image: image3.wmf]k

b

 with
[image: image4.wmf]1

,

,

15

,

16

-

+

-

+

-

+

=

L

A

L

A

L

A

k

K

 and L = 24, are scrambled with the UE identity
[image: image5.wmf]0

,

14

,

15

,

,...,

,

ue

ue

ue

x

x

x

 according to
[image: image6.wmf]2

mod

)

1

,

(

-

-

+

+

=

k

L

A

ue

x

k

b

k

b

.
5.3.3.1
DCI formats

The ordering of the information bits in the payload description below starts with
[image: image7.wmf]0

a

 and ends with
[image: image8.wmf]1

-

A

a

.

The information fields are multiplexed according to the order they are listed in each DCI format. The first bit of each information field corresponds to MSB.
5.3.3.1.1
Format 0

DCI format 0 is used for the scheduling of PUSCH.

The following information is transmitted by means of the DCI format 0:

- Flag for format0/format1A differentiation – 1 bit

- Hopping flag – 1 bit

- Resource block assignment and hopping resource allocation –
[image: image9.wmf]é

ù

)

2

/

)

1

(

(

log

UL

RB

UL

RB

2

+

N

N

 bits

- For PUSCH hopping:

- NUL_hop bits are used to obtain the value of
[image: image10.wmf])

(

~

i

n

PRB

 as indicated in subclause [8.4] of [3]

-
[image: image11.wmf]é

ù

÷

ø

ö

ç

è

æ

-

+

UL_hop

UL

RB

UL

RB

2

)

2

/

)

1

(

(

log

N

N

N

 bits provide the resource allocation of the first slot in the UL subframe

- For non-hopping PUSCH:

-
[image: image12.wmf]é

ù

÷

ø

ö

ç

è

æ

+

)

2

/

)

1

(

(

log

UL

RB

UL

RB

2

N

N

 bits provide the resource allocation of the first slot in the UL subframe

- Modulation and coding scheme and redundancy version – 5 bits

- New data indicator – 1 bit

- TPC command for scheduled PUSCH – 2 bits

- Cyclic shift for DM RS – 3 bits

- UL index (2 bits, this field just applies to TDD operation)

- CQI request – 1 bit
- HARQ-ACK indicator – 1 bit
If the number of information bits in format 0 is less than for format 1A, zeros shall be appended to format 0 until the payload size equals that of format 1A.

PAGE
1

_1269682193.unknown

_1275732238.unknown

_1275733054.unknown

_1275733572.unknown

_1269860912.unknown

_1275732111.unknown

_1269860889.unknown

_1248982594.unknown

_1265480022.unknown

_1269682163.unknown

_1257081399.unknown

_1234201026.unknown

