3GPP TSG RAN WG1 #52 R1-080701
Sorrento, Italy, February 11 – 15, 2008
Source:
Texas Instruments
Title:
Some Options for Cyclic Shift Hopping
Agenda Item:
6.1.2
Document for:
Discussion and Decision

1. Introduction

Cyclic – shift hopping should be applied to both PUCCH and PUSCH. Furthermore, one requirement for cyclic shift re-selection should be simplicity of the logic. In addition, it should provide a sufficient amount of interference randomization. In this paper we propose a simple formula for cyclic – shift hopping, which has following desirable properties.
1) All cyclic shifts are permuted from one usage to the next. This avoids collisions.

2) Simplicity. The formula can be implemented in a straightforward manner, irrespective of how many cyclic shifts are there. Specifically, one formula can be applied if there are 8, 12, 18, or another number of cyclic shifts available.
3) Mapping currently adjacent cyclic shifts to substantially separated cyclic shifts in the next assignment. Thus, if there is some cross-talk for the current selection, it is avoided in the next.
4) Potential for randomization between cells. Specifically, different cells can cyclic-shift assignments in a different order, so that interference is randomized.
2. Formula for Cyclic Shift Hopping

General Formula is as follows
m[t + 1] = (n x m[t] + c) mod M

· Here, M is the number of possible cyclic shifts.

· Here m is the index of the actual cyclic shift, chosen from the set {0, 1, 2, …, M – 1}.

· Here m[t] is the index of the cyclic shift used at time index t.

· Here, n is any number which is relatively prime with M.

· Here, t is the time index, whose granularity depends on how often cyclic shift hopping is performed. Note that index t can also be computed modulo a certain period.
· Here, x is just a multiplication sign.

· The quantity c can also vary with time. It can be used so that different cells hop differently.

Note that there is no requirement of selecting prime numbers. It is only that M and n are relatively prime i.e. they can’t have common factors. It is a mathematical fact that, as m[t] ranges through the set {0, 1, 2, …, M – 1}, the n x m[t] mod M will range through the same set. If m1[t] and m2[t] are two current cyclic shifts, and n is relatively prime with M, then n x (m1[t] – m2[t]) divides M only when m1[t] and m2[t] are equal. Thus, requirement 1 from the introduction is satisfied. Implementation wise, it is better to select a non-prime M, since modulo operation with a prime number can be complex.
Note that the formula can be implemented recursively. Basically, all what is needed is the current value of the cyclic shift, so that the next one can be computed. This can further simplify the implementation, which can be done with a simple state-machine.
In order for different cells to hop differently, a different offset c can be employed. So, c can be cell – specific or cell – group specific. As a simple example, c can be say CELL_ID or a CELL_GROUP_ID. If additional randomization is needed, the c can also be made time – dependent, with a component which depends on time. For example, c can be CELL_GROUP_ID added with a time-component. When signaling a reference cyclic shift (PUSCH), it can be implicitly understood that it is with respect to some time – reference.
2.1. Example: M = 8 Cyclic Shifts
For the case of M = 8 cyclic shifts (PUSCH), we could choose n = 3 or n = 5, for instance. Suppose that we choose n = 5. Then choices could be

m[t + 1] = (5 x m[t] + CELL_GROUP_ID) mod 8

m[t + 1] = (5 x m[t] + CELL_GROUP_ID + t) mod 8
2.2. Example: M = 12 Cyclic Shifts

For the case of M = 12 cyclic shifts we could also choose n = 5 to match the previous scenario Then choices could be

m[t + 1] = (5 x m[t] + CELL_GROUP_ID) mod 12

m[t + 1] = (5 x m[t] + CELL_GROUP_ID x t) mod 12
Assuming that CELL_GROUP_ID x t = t, for some specific cell group, then cyclic shift indecies are permuted as follows (just an example), where t starts from 1 in transition from the first row:
0 1 2 3 4 5 6 7 8 9 10 11
1 6 11 4 9 2 7 0 5 10 3 8
7 8 9 10 11 0 1 2 3 4 5 6
2 7 0 5 10 3 8 1 6 11 4 9
2 3 4 5 6 7 8 9 10 11 0 1
Etc…
2.3. Specific Considerations for PUSCH

In PUSCH, the cyclic shift is signaled together with the grant. The cyclic shift for second slot can then be computed using the above formula. Note that, however, if a UE is scheduled on a certain RB for the current sub-fame, then it is very likely that the same UE will be scheduled on the same RB for the next sub-frame. This is because channel and interference conditions typically change slowly. Figure 1 shows a measure of the probability (taken from an actual system simulation) that a UE will be scheduled in two concurrent frames on the same RB. As shown in Figure 1, if a UE is scheduled on one RB now, then the UE will be allocated the same RB for the next sub-frame, with 90% probability. This is the characteristic of channel-dependent scheduling.
[image: image1.emf]0500100015002000250030003500400045005000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [msec]

Re-scheduling Rate

[image: image2.emf]0500100015002000250030003500400045005000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time [msec]

Re-scheduling Rate

Figure 1: % of RBs used by same UE across consec sub-frames. Trace 1 (left) and Trace 2 (right).
Thus, given that the re-scheduling is practically certain, then there are options: Option 1) let the NodeB implementation perform the cyclic-shift hopping across consecutive sub-frames, while hopping (re-mapping) is automatic across slots, and Option 2) let the cyclic – shift hopping (re-mapping) also extend across slots. Note that Option 2 simplifies the NodeB implementation.
3. Conclusion

This paper proposes specific formulas for cyclic shift hopping. A single-structure formula can be used, irrespective of how many cyclic shifts are needed for it. The proposed formula satisfies all requirements on simplicity, re-usability of all cyclic shifts and interference randomization. Thus, we propose that a generic structure m[t + 1] = (n x m[t] + c) mod M is adopted for cyclic shift hopping
4. References

[1] R1 – 074788, Samsung, “Slot-level UL ACK/NACK Cyclic Shift/Orthogonal Cover Remapping.”
[2] R1-080294, NSN Networks, “Cyclic Shift Hopping and DM RS Signaling.”
[3] R1-080468, Qualcomm, “Hopping of UL DM-RS and Other Details.”
[4] R1-074411, Panasonic, “Cyclic Shift Hopping Pattern for Uplink ACK/NACK.”

[5] R1-080030, Samsung, “Slot-level UL ACK/NACK Cyclic Shift/Orthogonal Cover Remapping”
