

3

3GPP TSG RAN1 #51
R1-074960
November 5th – 9th, 2007
Jeju, Korea
Agenda item:
6.2.3
Source:
Qualcomm Europe
Title:
CCE to RE mapping
Document for:

Discussion and Decision
1
Introduction
This contribution describes our proposal for the CCE-to-RE mapping.
We assume that the following information is known for the entity performing the interleaving/deinterleaving:

· System BW
· Existence of 3rd and 4th antenna and all RS locations

· Location of PCFICH tones

· Number of PHICH mini-CCEs

· PHICH time duration
· PDCCH symbol span (only for PDCCH)

Our primary concern is the frequency diversity for the PHICH and PDCCH CCEs. We propose an interleaver that achieves systematically good diversity.
2
Discussion
In [1], various interleavers were compared and their autocorrelation properties were studied. It was shown that some pre-existing designs, such as QPP and BRI have weak autocorrelation properties. This is due to their inherent repeating differential patterns. By differential patterns we mean that we can find pairs of sets of n consecutive sequence indexes where the locations of the elements are related by a linear offset, both before and after the interleaving. The two offsets need not be the same. It was shown [1] that the Costas interleaver doesn’t suffer form this weakness. It is true, in general for the Costas interleavers, that when we take any sequence element pair and form an offset vector (d1, d2), whose elements are the location offsets between the pair before and after the interleaving then the Costas interleaver ensures that there are no identical offset vectors among all pairs.
We feel that the above is a nice property of the Costas interleavers, but it is really not necessary nor is it sufficient for having an optimum interleaver design. This is because for the PDCCH we need groups of elements (i.e. CCEs) as a set to be distinct, which is not necessarily ensured by the Costas design.

It seems that any sufficiently random interleaving should give auto- and cross-correlation properties close to the Costas interleavers, therefore we are rather focusing on a random interleaver that ensures good frequency diversity.

We will give an example interleaver design in the following sections.

2.1
General Mapping Procedure

Here we describe the outline of the proposed interleaver design.

1. First, we define diversity regions across the system bandwidth. Each diversity region is a distinct set of consecutive REs, and the diversity regions together cover the entire system BW. In our example, we set the number of diversity regions always to a power of two (which will enable a bit reversed interleaving of the diversity regions). For example, we can have

· 1.4 MHz:
4 regions
· 3 MHz:

8 regions

· 5 MHz:

16 regions

· 10 MHz:
32 regions

· 15 MHZ:

64 regions

· 20 MHz:

64 regions

2. Next, we bin all available mini-CCEs to the diversity regions. At this stage, we consider the unavailability of RS and PCFICH tones. It is not always possible to have an equal number of REs in all diversity regions but we can ensure that the difference in the number of participant REs is at most equal to one mini-CCE size among all diversity regions. In this mapping, we don’t yet consider PHICH duration or the number of PHICH CCEs. The diversity regions are filled one by one with consecutive (in frequency) mini-CCEs starting from the highest frequency to lowest. The mapping is done in each control symbol independently.

3. Bit-reverse interleave the diversity region indices

4. At the next stage, we map the PHICH mini-CCEs to the already binned physical mini-CCE locations. This is done sequentially, in a ‘cyclic diagonal’ fashion. For example, assuming 3-symbold PHICH, the first mini-CCE is mapped to the first symbol’s first diversity region, the second mini-CCE to the second symbols’ second diversity region, the third mini-CCE to the third symbols’ third diversity region, the fourth mini-CCE to the first symbols’ fourth diversity region and so on. In each diversity region, we use the first available mini-CCE from the list generated in step 2. Note that diversity region indices are taken after the index interleaving in step 3.
5. At the next stage, we map the PDCCH mini-CCEs to the already binned physical mini-CCE locations. This is done the same way as for the PHICH in step 4, but naturally, only the leftover mini-CCEs will be utilized. The symbol duration for the PHICH and PDCCH in general is different.

6. Randomly permute the elements in each diversity group. This is done in each control symbol independently. The permutation is done independently of which mini-CCEs are actually used.
7. Apply cell dependent cyclic shift in the frequency domain in each symbol.

8. Use the mapping established by the above procedure to map mini-CCE to REs.
An example is given in Figure 1 below for Steps 3 and 4.

[image: image1.emf]Without bit reversed interleaving

With bit reversed interleaving

Figure 1 Example mapping with Eight Diversity Regions and Eleven mini-CCEs
2.2
Diversity Properties

Due to the bit reversed diversity group indexing, and the symbol dependent mini-CCE to diversity group mapping, the distribution over the diversity groups will be optimum. If the number of diversity groups is great enough, this ensures close to optimum diversity.
2.3
Cross-correlation Properties

Since we carry out independent permutation within every diversity group, the collision across eNBs will be naturally mitigated. For this, we need to make the permutation cell_ID dependent. This is true irrespective of the cyclic shift applied in step 7 in 2.1.

2.4
Intra Diversity Group Permutation Details
We propose a generic random permutation. This is done by iteratively adding new elements in a permutation cycle structure.
We build the permutation in an iterative fashion according to the following:

Let
[image: image2.wmf]n

s

 be the permutation corresponding to length
[image: image3.wmf]n

, then to get
[image: image4.wmf]1

+

n

s

, we do:
1. Generate a random integer
[image: image5.wmf]1

+

n

r

 uniformly distributed over
[image: image6.wmf]1

...

1

+

n

2. Modify
[image: image7.wmf]n

s

 as

a. If
[image: image8.wmf]1

1

+

=

+

n

r

n

,
[image: image9.wmf]1

)

1

(

1

+

=

+

+

n

n

n

s

b. If
[image: image10.wmf]1

1

+

¹

+

n

r

n

,
[image: image11.wmf]1

)

(

1

1

+

=

+

+

n

r

n

n

s

 and
[image: image12.wmf]))

(

(

)

1

(

1

1

+

+

=

+

n

n

n

n

r

n

s

s

s

Example:

[image: image13.wmf]3

5

1

4

2

:

5

s

(
[image: image14.wmf]1

2

3

5

1

4

6

:

6

6

=

r

if

s

(
[image: image15.wmf]2

4

3

5

1

6

2

:

6

6

=

r

if

s

(
[image: image16.wmf]3

1

3

5

6

4

2

:

6

6

=

r

if

s

(
[image: image17.wmf]4

5

3

6

1

4

2

:

6

6

=

r

if

s

(
[image: image18.wmf]5

3

6

5

1

4

2

:

6

6

=

r

if

s

(
[image: image19.wmf]6

6

3

5

1

4

2

:

6

6

=

r

if

s

The advantage of this method is that we don’t need to perform moving blocks of data in memory at every iterative step. Each iteration step takes only one memory read and two memory write. There is no other integer arithmetic involved, except for the
[image: image20.wmf]1

+

n

r

 random generation.
We can generate permutations of any length with this method, the probability of the resulting permutation is uniformly
[image: image21.wmf](

)

1

)!

1

(

-

+

n

.
2.5 Random Number Generator

One implementation is based on m-sequences. There is a length-12 m-sequrence generator, which is shifted by one every time a new random number is generated. We take
[image: image22.wmf]n

b

 LSB bits of the shift register contents, and calculate
[image: image23.wmf]n

r

 as
[image: image24.wmf])

),

(

mod(

n

b

m

r

n

n

=

 where
[image: image25.wmf])

(

n

b

m

 is the integer represented by those
[image: image26.wmf]n

b

 LSB bits.
[image: image27.wmf]n

b

 can be any number between
[image: image28.wmf]é

ù

1

)

1

(

log

2

+

+

=

n

b

n

 and 12, we could use
[image: image29.wmf]é

ù

1

)

1

(

log

2

+

+

=

n

b

n

 in order to minimize the complexity of the modulo
[image: image30.wmf]n

 operation.
Other random generation methods are also possible.

Improved randomization can be achieved if the values read from the shift register are interleaved this is a very short length-12 interleaver. For example, a simple linear interleaver could be used with an offset factor relative prime to 12.

For different cells, different initial state of the shift registers could be assumed. This can be derived by using the 9-bit Cell_ID after zero padding as the initial state of the shift register.
4
Conclusions

We summarized our proposed PHICH and PDCCH interleaver structure.
In summary:

· PHICH inside the PDCCH interleaver
· OFDM symbol based interleaving

· Define control regions in frequency to maximize the separation of CCEs in the frequency domain across OFDM symbols

· Bit-reversed interleaving of control regions

· Random interleaver within the control regions

References
[1] R1-074226, “Generic Interleaver for PDCCH,” Huawei, RAN WG1 meeting #50bis, Shanghai, China, Oct. 8-12, 2007.
[2] R1-074505, “Way Forward On Control Channels Multiplexing,” NEC, Nokia, Nokia Siemens Network, RAN WG1 #50bis, Shanghai, China, October 8–12, 2007.

_1255784870.unknown

_1255860573.unknown

_1255860825.unknown

_1255860936.unknown

_1255863578.vsd
Without bit reversed interleaving

With bit reversed interleaving

_1255861688.unknown

_1255860874.unknown

_1255860692.unknown

_1255785529.unknown

_1255859757.unknown

_1255860236.unknown

_1255785555.unknown

_1255786372.unknown

_1255859383.unknown

_1255785570.unknown

_1255785542.unknown

_1255785023.unknown

_1255785350.unknown

_1255784952.unknown

_1255783464.unknown

_1255784667.unknown

_1255784738.unknown

_1255783576.unknown

_1255784648.unknown

_1255783506.unknown

_1255783419.unknown

