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1 Introduction

Uplink inter-cell power control has been regarded as an important way for uplink inter-cell-interference mitigation technique [1] and the corresponding algorithms [2-8] have been discussed for a long time. The basic goal of uplink inter-cell power control is to control the bad impact of inter-cell interference on system performance to an acceptable extent. Common criterion for scaling inter-cell interference impact is IoT or interference power. Almost all of uplink inter-cell power control algorithms intend to control IoT to a certain extent and most of these algorithms are based on overload indicator (OI) generated according to IoT. 
In this document, we will illustrate that IoT is not accurate enough to scale the interference impact and we will propose a more accurate criterion for scaling interference impact which can make the uplink inter-cell power control algorithms more efficient.
2 Analysis of Interference Impact on Performance 
Receiving power of signal is mainly determined by three factors, i.e. propagation loss (or distance-dependent path loss), shadow fading and fast fading, and it can be expressed as
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 is receiving power of the signal from UE 
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is small scale fading between UE 
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 and eNB 
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and for L-path Rayleigh fading channel it can be modelled as a random variable with normalized chi-square distribution with mean one [10], 
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 and eNB 
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 and can be expressed as
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(2) where 
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 are propagation loss and shadow fading between UE 
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 and eNB 
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 respectively, 
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is a log-normal distribution random variable with zero mean and variance
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Let’s denote 
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and it consists of two components [9],

· near field component is related to the environment of UE and common to all eNB, 
· far field component is related to the environment of eNB and may vary from one eNB to another.
So 
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(3) where 
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are far field value of eNB 
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 and near field value of UE
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 and they are iid normal distribution random variable with zero mean and variance 
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 is correlation coefficient between far and near field value. Thus 
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(4) where 
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Normally IoT of eNB 
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 can be defined as
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(5) where 
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 is thermal power, 
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is interference power received by eNB
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. According to formula (1), (2), (4), 
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 can be expressed as
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(6) where 
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is the number of interfering UE in neighbouring cell. When
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(7) where
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The receiving
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of the signal from a certain user 
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 in cell 
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 can be expressed as
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If we bring (5), (7) into (8), we can get
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Assuming 
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 (this assumption is usually true), (9) becomes
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From (5), (7) and (10) we can see far field value of shadow fading will impact IoT but has nothing to do with receiving quality of cell
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, in other words larger IoT only means stronger interference power and doesn’t necessarily mean stronger impact on the system performance.
3 A Proposed Criterion for Scaling Interference Impact
According to the analysis in the section 2, due to far field value, IoT is not accurate enough to scale interference impact on performance of target cell. So we should eliminate the effect of far field value from IoT when it is used to scale interference impact. For example, we can define modified IoT 
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as a new criterion and it can be expressed as
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(11) where 
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are IoT and modified IoT of eNB
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 respectively and both are dB value, 
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is an adjustment factor which can be adjusted according to requirement, 
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is far field value of shadow fading that can be calculated by using the methods in appendix and it is also dB value. From the simulation results in section 4, we can see that 
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 is more accurate to scale interference impact on performance than IoT does.
4 Simulation Assumptions and Results
Major assumptions are presented in Table 1 and other parameters are identical with those in [1].
Table 1 Simulation Assumptions
	Simulation case 1
	CF: 2GHz，ISD: 500 m，Channel model：3 kmph, TU (6 paths)，PLoss：20dB, BW: 10MHz

	Duration
	20 s including 2 s warm up

	TTI
	1ms

	RB
	180 kHz

	Overhead
	29%

	Scheduling
	PF (FDS)

	UE Power Class
	21 dBm

	User Number
	40 UEs/sector

	Antenna configuration
	1 Tx antenna, 2 Rx antennas

	Shadowing correlation
	Between cells
	0.5

	
	Between sectors
	1

	Shadowing standard deviation
	8 dB

	Traffic
	FB


In Table 2 we present the correlation coefficient among sector spectrum efficiency (SE) which represents system performance of each sector, far field value of each sector, mean IoT of each sector and modified mean IoT of each sector defined by (11).
Table 2 Preliminary Simulation Results
	
	Far field value
	Mean IoT
	Modified mean IoT
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	SE
	0.1
	0.67
	0.82

	Far field value
	－
	0.69
	0.14


From the simulation results we note that
· The correlation between sector spectrum efficiency and far field value of shadow fading is very weak, in other words, far field value has nothing to do with system performance as we discussed in section 2.
· The correlation between IoT and far field value is strong, this illustrates that far field value have great effect on IoT.
· The correlation between modified IoT and Far field value is very weak, this illustrates that the impact of far field value on IoT has been eliminated.
· The correlation between modified IoT and sector spectrum efficiency is higher than that between IoT and sector spectrum efficiency, this illustrates that the modified IoT scales the interference impact on system performance more accurately that IoT does.
5 Conclusions
In this document, we discussed criterion for scaling interference impact on system performance and proved that the far field value of shadow fading impacts IoT or received interference power greatly, but has nothing to do with interference impact on system performance. Thus we propose the following:
· Instead of controlling received interference power strength, the goal of the uplink power control algorithms is to control interference impact on system performance to a certain extent.

· IoT or interference power is not suitable for scaling interference impact on system performance and the impact of far field value of shadow fading can be eliminated from the IoT or interference as discussed in section 3.
· To achieve better interference control effect, instead of using IoT, an interference impact scale criterion without the effect of far field value of shadow fading can be considered in uplink power control algorithm.
· Corresponding measurement for calculating far field value of shadow fading is supported in LTE.
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Appendix: Calculation of Far Field Value
We present two methods to calculate far field value of shadowing fading.

· Method 1
1. Selecting 
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random positions in cell 
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 and calculate the distance between these positions and eNB
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2. Using a proper propagation model and 
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 to calculate propagation loss of the signal between these positions and eNB
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3. Sending measuring equipment to these positions to measure average receiving power of downlink pilot denoted by 
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 and using formula (12) to calculate path loss 
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where 
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is average Rx power of downlink pilot at position 
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4. Using formula (2), 
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5. Using formula (13) to calculate far field value of shadowing fading




(13)
· Method 2

1. Selecting
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UEs in cell 
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 randomly
2. Using GPS or other position technique to determine the positions of these UEs and calculate the distance between these UEs and eNB
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3. Using a proper propagation model and 
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 to calculate propagation loss of the signal between these positions and eNB
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4. Informing these UEs to report average receiving power of downlink pilot and calculate path loss
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5. Using formula (2), 
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6. Using formula (13) to calculate far field value of shadowing fading
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