3GPP TSG RAN WG1 Meeting #48 R1-070681
St. Louis, USA, February 12 – 16, 2007

Agenda Item:

6.4
Souce:

ZTE
Title:
Further Consideration of Code Block Segmentation for Contention-free Turbo Interleavers
Document for:
Discussion and Decision

1. Introduction
It was decided (in the Sorrento meeting, 3GPP TSG RAN WG1#47bis) that QPP(quadratic permutation polynomial) interleavers have been adopted for E-UTRA. According to CF interleaver criterion of QPP, the turbo interleavers are defined for only a subset of the information block sizes. Thus the code block segmentation rule in [2] cannot be applied directly to turbo coding with QPP intra interleavers.
In R1-063062[1], Motorola has proposed to modify the code block segmentation to handle the non-contiguous interleaver sizes that will be defined for LTE turbo codes. And they suggested that instead of using one interleaver size for all segments of a transport block, two adjacent interleaver sizes are allowed to minimize the number of filler bits for a given transport block.

This document raises a further consideration of code block segmentation for CF turbo interleavers, and proposes a trade-off code segmentation method, which combines the above mentioned “using one interleaver size” method and “allowing two adjacent interleaver sizes” method in [1]. It has been shown that the trade-off code segmentation can achieve the balance of the best performance and the minimum number of filler bits.
2. Code Block Segmentation Methods
The segmentation rule incorporates following properties of turbo code (TC) and its role in physical layer in [1] is reviewed here.

(a) TC performance improves with increasing interleaver size K.

(b) TC performance as a function of increasing block size has diminishing returns beyond a few thousand bits.

(c) A TB is received correctly only if all its segments are decoded correctly. This is important since TB is the HARQ retransmission unit.

Properties (a) and (c) imply TB performance is limited by the worst-performing segment (e.g., smallest size) and therefore, like [2], it is better to have segments of approximately equal sizes. By the way, the gain to increase the information block size 3072 to 4096 is 0.1dB.
More detailed, property (b) denotes that no further coding gain when block size beyond 4096 can be observed, which imply that for very large interleaver sizes (e.g., >4096), the adjacent interleavers sizes have the same performance.
2.1. Information Block Size Determination (Rel. 6)

When X bits are input to the segmentation function, the rule for determining the interleaver size as described in Rel.6 version is as follows

[image: image1.wmf]é

ù

é

ù

(

)

.

,

,

40

max

,

max

X

CK

Y

C

X

K

Z

X

C

-

=

=

=

where Zmax=5114 is the maximum interleaver size defined in [2], C is the number of code blocks (or segments), K is the interleaver size, and Y is the total number of filler bits per TB. Therefore, a TB of size X is segmented into C pieces of approximately same size K, and each piece is encoded using a K-bit interleaver. When Y>0, Y zeros are prepended to the beginning of the first information block before encoding. Since, Rel.6 TC interleavers are defined for all values between 40 and 5114 bits, the number of filler bits is very small.
However, for the turbo code with CF interleavers of non-contiguous sizes, the code blocks from Rel.6 segmentation can not be directly encoded by the CF turbo code, and an additional pre-processing, in which a CF interleaver size is determined according to K and filler bits is added, before turbo encoder is required. In fact, it’s simple and desirable to modify Rel.6 segmentation rule to avoid the pre-processing.
2.2. The Segmentation Method of Allowing One Interleaver Size[1]
Similar with the Rel.6 code block segmentation rule, this method segments TB into C pieces code block of the same size with filler bits ,and each code block can be directly encoded by the CF turbo code.

For the simple way, all segments can be encoded by turbo encoder with a single interleaver size KI , where KI is the smallest interleaver size from Ktable where KI ≥
[image: image2.wmf]é

ù

C

X

.

The detail describe as following:

[image: image3.wmf]max

CXZ

=

éù

êú

[image: image4.wmf]I

YCKX.

=-

where i,
[image: image5.wmf]1

iT

££

, indexes into the group of non-contiguous interleaver sizes available in Ktable (assuming sizes in Ktable are sorted in ascending order). The number of filler bits is
[image: image6.wmf]X

CK

Y

I

-

=

.The filler bits may be simply padded to the end of one code block or evenly distributed to all the C blocks.

This segmentation method can ensure that the size of the smallest code block is the largest; actually since the performance of TB block is decided by the smallest code block, this segmentation rule can achieve the optimal TB performance. That is to say, in the view of performance, this method is the best.

However, the number of filler bits will increase when the number of code block increase. In the worst scenario of [3], the filler bits is 64*C.

For large TB size, a modification to the segmentation method may be needed in order to reduce the number of filler bits. According to [1], filler bit insertion can be reduced by using two adjacent interleaver sizes.
 Figure 1 has depicted that this method leads to a lot of filler bits when TB size is large.
[image: image7.png]
Figure 1 the number of filler bits for the method of

allowing one interleaver size.
2.3. The Segmentation Method of Allowing Two Adjacent Interleaver Sizes [1]
For a given TB, it is proposed that two adjacent interleaver sizes KI-1 and KI, KI-1<KI, 1<=I<=T, be selected from Ktable (KI-1 =0 when I=1). This method still uses the number of segments C and the larger interleaver size KI as in the previous case

Let CI-1 and CI be the number of segments that are encoded using interleaver sizes KI-1 and KI, respectively, and let DI = KI KI-1 denote the difference between the adjacent interleaver sizes KI-1 and KI. The parameters (CI, CI-1) are determined as follows:

[image: image8.wmf]é

ù

,

Z

max

X

C

=

[image: image9.wmf].

,

1

ú

û

ú

ê

ë

ê

-

-

=

ú

û

ú

ê

ë

ê

-

=

-

I

I

I

I

I

I

D

X

CK

C

C

D

X

CK

C

Another way to determine parameters (CI, CI-1) as follows:

[image: image10.wmf]I

I

I

I

I

C

C

C

,

D

CK

X

C

-

=

ú

ú

ù

ê

ê

é

-

=

-

-

1

1

Note that when
[image: image11.wmf]X

CK

I

-

 < DI, this method gives same result as Section 2.2.When
[image: image12.wmf]X

CK

I

-

 ≥ DI, this method requires less padding per TB. It can be proven that overall padding Y((per TB) is bounded by DI, (regardless of C),

[image: image13.wmf]1

0

-

-

<

¢

¢

£

I

I

K

K

Y

.

This method works well when the TC performance difference between adjacent interleaver sizes is close.
Figure 2 illustrates that this method can effectively reduce the number of filler bits, especially when TB size is large.

[image: image14.png]
Figure 2 the number of filler bits for the method of

allowing the adjacent two interleaver sizes.
2.4. The Suggested Segmentation Method
The shortcoming of the segmentation of one interleaver size
The method can be regarded as the original segmentation rule for CF turbo code, and this method can achieve the best performance. However, when the TB size is large, the number of filler bits is large. As a result, filler bits can increase the decoder computation complexity and decoding latency.
The shortcoming of the segmentation of two adjacent interleaver sizes
This method can reduce the number of filler bits significantly at large TB size. However, compared with the previous method, this method will lead to some performance degradation when TB size is small.

The combination method with a threshold

This method combines the previous two methods, which not only can ensure the best performance but also can reduce the number of filler bits very well.

When the TB size is small, namely
[image: image15.wmf]é

ù

4096

£

C

X

, the method of allowing one interleaver size can be applied. In this case, the method can avoid the performance degradation caused by the method of allowing two adjacent interleaver sizes. What is more, if the method of allowing two adjacent interleaver sizes, the number of decreased filler bits of per TB is very small, nearly zero.
When the TB size is large, namely
[image: image16.wmf]é

ù

4096

>

C

X

, the method of allowing two adjacent interleaver sizes can be applied. In this case, compared with the method of allowing one interleaver size, this method will not lead to the performance degradation, and this method can effectively reduce the number of filler bits.

Figure 3 has denoted the difference of the number of filler bits between the suggested method and the method of allowing the adjacent two interleaver sizes. Compared with the method of allowing one interleaver size, the suggested method almost have the same effect on effectively reducing the filler bits as the method of allowing two interleaver sizes.
[image: image17.png]
Figure 3 the difference of the number of filler bits between the suggested

method and the method of allowing the adjacent two interleaver sizes.
3. Conclusion
 This document has researched code block segmentation for CF turbo interleavers, and proposes a trade-off code segmentation method, which combines the above mentioned “using one interleaver size” method and “allowing two adjacent interleaver sizes” method. It has been shown that the trade-off code segmentation can achieve the balance of the best performance and the minimum number of filler bits.
References

[1]. R1-063062, Motorola, “Code Block Segmentation for Contention-free Turbo Interleavers” 3GPP TSG RAN WG1 #47, Riga, Latvia, 06 – 10 November 2006
[2]. 3GPP TS 25.212 v6.4.0 (2005-03): “Multiplexing and Channel Coding (FDD) (Release 6)”.
[3]. R1- 071026, Ericsson, Motorola, Broadcom, ZTE, “QPP interleaver parameters,” 3GPP TSG RAN WG1 #48, St. Louis, USA, February 12-16, 2007.

 Page 1 of 5

_1232258280.unknown

_1232266673.unknown

_1232273769.unknown

_1232276861.unknown

_1232276862.unknown

_1232276536.unknown

_1232267462.unknown

_1232266671.unknown

_1215952161.unknown

_1223733269.unknown

_1223733274.unknown

_1223728046.unknown

_1215423880.unknown

