3GPP TSG RAN WG1#44bis
Tdoc R1-061054
Athens, Greece
27th – 31st March 2006
Agenda Item:

7
Source:

IPWireless

Title:

Channelisation Code Hopping for 3.84Mcps TDD Enhanced Uplink
Document for:
Discussion and Decision
1 Introduction
Intra-frame code hopping was investigated during the TDD enhanced uplink study item phase as a technique to improve the link performance of the uplink [1]. Some degree of code hopping is already employed in Rel-6 3.84Mcps TDD in which the cell-specific scrambling code may is varied alternately on an odd-frame/even-frame basis. This is able to provide code diversity when the TTI is 20ms or longer. However, when moving to the 10ms TTI of 3.84Mcps TDD enhanced uplink, more rapid changing of the spreading sequences is required to take advantage of code diversity. Thus, in [1], intra-frame (<10ms) code hopping was proposed and shown to provide significant performance advantages over the case of no hopping.

Backwards compatibility with existing UEs and 3GPP releases is also an important consideration. In this document, we propose a form of code hopping which integrates smoothly with the current Rel-6 cell parameter ID cycling, whilst still providing the advantages of intra-frame code diversity.
2 Proposal

2.1 Overview
In current releases, the overall uplink spreading sequence for TDD is comprised of two components: a channelisation code (OVSF) component and a length-16 cell-specific scrambling code component. As mentioned in section 1, the scrambling code component is cycled between two sequences on a frame by frame basis corresponding to adjacent cell parameter IDs. For enhanced uplink, the channelisation component is explicitly assigned by the scheduler [2].

If scrambling code hopping were to be employed, it is envisaged that problematic scrambling code collisions could occur if the set of scrambling codes used in the hopping case was allowed to overlap with the set of scrambling codes used in the non-hopping case. Such a situation might occur if one cell was employing scrambling code hopping on timeslot “T” and another neighbouring cell was not, yet the code sets assigned to each were not mutually exclusive. If one were to assign mutually exclusive code sets for hopping and no-hopping cases, then the currently-defined set of scrambling codes would either have to be partitioned into those for hopping and those for non-hopping or would need to be extended to provide a new set of scrambling codes for the hopping case. In both cases, system complexity is increased.
Some degree of cell ID re-planning in established networks may also be required which is undesirable.
In order to avoid any form of cell ID re-planning, and to avoid system complexity increase, it is proposed to retain the current scrambling code assignments and odd/even cell parameter ID cycling. In order to achieve the desired code diversity within this constraint, we propose instead to hop the channelisation codes used for E-DCH transmission within each timeslot of the E-DCH TTI.
This situation is shown in Figure 1 where it can be seen that the channelisation code hops in an orthogonal pattern for each UE. The scrambling code is the same for all UEs in a given frame, but varies on odd/even frames as per the current Rel-6 specifications.

[image: image1.emf]channelisation code

scrambling code

frame f frame f+1 frame f+2

user 1

user 2

user 3

user 4

scrambling code s1

scrambling code s2

Figure 1
Thus, assuming E-DCH transmissions do not overlap in time with those of legacy channels in the same cell (this may easily be achieved via appropriate RRM) full compatibility with Rel-6 is maintained and no re-planning of cell IDs is required. Furthermore, the flexibility to freely assign certain timeslots for E-DCH in each cell is retained without significant impact (see Figure 2). In this situation there is the possibility to have a misalignment of the timeslots assigned to E-DCH between cells, yet this causes no problem because sufficient code interference protection is achieved via the cell specific scrambling codes which are retained as per the current Rel-6 case.

[image: image2.emf]DL DL DL DL DL DL DL UL UL UL UL UL UL UL UL

DL DL DL DL DL DL DL UL UL UL UL UL UL UL UL

E-DCH (code hopping)

timeslots

E-DCH (code hopping

timeslots)

Cell 2

(scrambling

code Y)

Cell 1

(scrambling

code X)

non-E-DCH-timeslots

(non-hopping)

non-E-DCH-timeslots

(non-hopping)

Figure 2 – flexible assignment of E-DCH timeslots in each cell
2.2 Midamble Allocation
Two midamble allocation schemes exist for the TDD uplink:

· Default midamble allocation

· UE-specific midamble allocation

For default midamble allocation, in which there is an association between midmables and channelisation codes, there is also a need to hop the midamble sequence in line with the channelisation code hopping pattern. By doing so, the relationship between midambles and channelisation codes is retained as per normal, on a slot by slot basis, and is not changed from the Rel-6 case. This means that code hopping may be supported with virtually no changes to the existing receiver structures.

The assumption under default midamble allocation is therefore that the actual transmitted midamble is mapped to the actual transmitted code as per the normal R99 default code/midamble mappings of [3]. “Actual” transmitted code refers to the code transmitted over the air (after the code hopping sequence and SF backoff procedures have been applied – see sections 2.3 and 2.4).

For the case of UE-specific midamble allocation, there is no explicit linkage between the midamble and the channelisation code and hence the midamble would not hop and would remain exclusively assigned to the UE.
2.3 Hopping Pattern and Description
The CCTrCH of E-DCH type occupies a single spreading code on each allocated timeslot of the TTI. The spreading factor of the code assigned to each UE is always the same on each allocated timeslot of the TTI and is under control of the scheduler. Hence UEs sharing a timeslot may have differing SF.

It is anticipated that a natural configuration would be one in which a number of timeslots in the radio frame are assigned exclusively for E-DCH use. In such scenarios, code hopping may be supported without impact to UEs using non-E-DCH services.
The proposal is to rotate the OVSF code tree on each timeslot assigned for E-DCH usage. This is done is such a way that the orthogonal allocations made to each user are preserved through each rotation. Thus, allocation of different SF to different users within the same timeslots/TTI are still possible.
The proposed OVSF code tree rotation consists of 16 defined hops, based upon a hop index hi. The hop index is calculated as function of two variables; the allocated timeslot index ti and the current CFN. The timeslot index ti is not equal to the absolute timeslot index, but is a value ranging from 0…nTRRI – 1 which corresponds to the timeslot location in the TRRI bitmap string on E-AGCH. Thus, if the TRRI bitmap represents timeslots {9, 11, 12, 14} (nTRRI = 4) then ti = 0 for the first timeslot (9), ti = 1 for the second timeslot (11), and so on. hi is then calculated as:
hi = (ti + CFN) mod 16
By including the CFN component, we ensure that the full hopping sequence is exercised despite the fact that the number of timeslots allocated to E-DCH in the frame is less than the hopping sequence length of 16. By mapping the timeslot index ti to the TRRI bitmap, we avoid poorly performing hopping sequences for some E-DCH timeslot (framing) configurations. For example, if timeslots 5,7,9,11 were allocated for E-DCH use, and ti was simply related to the absolute timeslot index, then an SF2 code would not effectively be hopped (see Table 1 below) due to a correlation between the hopping pattern and the E-DCH timeslot pattern. However, by assigning ti as a consecutive sequence for each assigned E-DCH slot, this situation may more easily be avoided by the scheduler and the hopping pattern integrity can be retained irrespective of the current framing configuration set by higher layers.
Once the set of hopping indexes has been formed for a given E-DCH TTI allocation to a UE , the hop pattern is then defined based upon the allocated OVSF code (determined by the scheduler and signalled on E-AGCH). The hopping patterns are defined as a function of the allocated OVSF code and SF (i.e. the CRRI field on E-AGCH) as shown in Table 1.
	
	
	Hop index hi

	Allocated Code
	CRRI
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF16
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	15
	1
	9
	5
	13
	3
	11
	7
	15
	2
	10
	6
	14
	4
	12
	8
	16

	2
	16
	2
	10
	6
	14
	4
	12
	8
	16
	1
	9
	5
	13
	3
	11
	7
	15

	3
	17
	3
	11
	7
	15
	1
	9
	5
	13
	4
	12
	8
	16
	2
	10
	6
	14

	4
	18
	4
	12
	8
	16
	2
	10
	6
	14
	3
	11
	7
	15
	1
	9
	5
	13

	5
	19
	5
	13
	1
	9
	7
	15
	3
	11
	6
	14
	2
	10
	8
	16
	4
	12

	6
	20
	6
	14
	2
	10
	8
	16
	4
	12
	5
	13
	1
	9
	7
	15
	3
	11

	7
	21
	7
	15
	3
	11
	5
	13
	1
	9
	8
	16
	4
	12
	6
	14
	2
	10

	8
	22
	8
	16
	4
	12
	6
	14
	2
	10
	7
	15
	3
	11
	5
	13
	1
	9

	9
	23
	9
	1
	13
	5
	11
	3
	15
	7
	10
	2
	14
	6
	12
	4
	16
	8

	10
	24
	10
	2
	14
	6
	12
	4
	16
	8
	9
	1
	13
	5
	11
	3
	15
	7

	11
	25
	11
	3
	15
	7
	9
	1
	13
	5
	12
	4
	16
	8
	10
	2
	14
	6

	12
	26
	12
	4
	16
	8
	10
	2
	14
	6
	11
	3
	15
	7
	9
	1
	13
	5

	13
	27
	13
	5
	9
	1
	15
	7
	11
	3
	14
	6
	10
	2
	16
	8
	12
	4

	14
	28
	14
	6
	10
	2
	16
	8
	12
	4
	13
	5
	9
	1
	15
	7
	11
	3

	15
	29
	15
	7
	11
	3
	13
	5
	9
	1
	16
	8
	12
	4
	14
	6
	10
	2

	16
	30
	16
	8
	12
	4
	14
	6
	10
	2
	15
	7
	11
	3
	13
	5
	9
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF8
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	7
	1
	5
	3
	7
	2
	6
	4
	8
	1
	5
	3
	7
	2
	6
	4
	8

	2
	8
	2
	6
	4
	8
	1
	5
	3
	7
	2
	6
	4
	8
	1
	5
	3
	7

	3
	9
	3
	7
	1
	5
	4
	8
	2
	6
	3
	7
	1
	5
	4
	8
	2
	6

	4
	10
	4
	8
	2
	6
	3
	7
	1
	5
	4
	8
	2
	6
	3
	7
	1
	5

	5
	11
	5
	1
	7
	3
	6
	2
	8
	4
	5
	1
	7
	3
	6
	2
	8
	4

	6
	12
	6
	2
	8
	4
	5
	1
	7
	3
	6
	2
	8
	4
	5
	1
	7
	3

	7
	13
	7
	3
	5
	1
	8
	4
	6
	2
	7
	3
	5
	1
	8
	4
	6
	2

	8
	14
	8
	4
	6
	2
	7
	3
	5
	1
	8
	4
	6
	2
	7
	3
	5
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	3
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4

	2
	4
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3

	3
	5
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2

	4
	6
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	1
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2

	2
	2
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

Table 1 –Channelisation Code Hop Patterns
These hopping patterns are orthogonal such that the orthogonality of the codespace assigned to each user is retained throughout the hopping sequence. For example, a user allocated SF16 code 1 on timeslot 10, 11 and 12 in CFN 5 with the TRRI bitmap corresponding to the timeslot set {8,9,10,11,12} would use the following code hopping sequence:

Timeslot 10, ti = 2, hi = 7, SF16 code 15
Timeslot 11, ti = 3, hi = 8, SF16 code 2
Timeslot 12, ti = 4, hi = 9, SF16 code 10
Meanwhile, another user allocated SF4 code 3 on the same timeslots would use the hop sequence below. Notice that the channelisation code assignments for the hopping SF16 user never fall within the codespace occupied by the hopping SF4 user in a given timeslot.

Timeslot 10, ti = 2, hi = 7, SF4 code 2 (equivalent to SF 16 codes 5 (8)

Timeslot 11, ti = 3, hi = 8, SF4 code 3 (equivalent to SF 16 codes 9 (12)

Timeslot 12, ti = 4, hi = 9, SF4 code 1 (equivalent to SF 16 codes 1 (4)

2.4 SF-backoff procedure
The MAC-e may select an E-TFC using a SF greater than or equal to the SF assigned by the scheduler. Similarly, in releases 99, 4, 5, 6, the UE may select a subset of the codespace resources assigned. In such cases, for existing releases it is defined that [3]:
If the UE autonomously changes the SF, it shall always vary the channelisation code along the branch with the higher code numbering of the allowed OVSF sub tree, as depicted in [8] <TS 25.223>.

It is proposed to keep this rule in the case of code hopping. The rule thus needs to be extended to clarify that in the case of code hopping, the “root node” of the OVSF sub-tree (under which the SF variation may be applied) is the effective allocated OVSF code after the timeslot hop sequence has been applied to the allocated OVSF code (ie: the root node may change on a per timeslot basis as a function of the hop sequence).
In this way any impacts on existing detectors/demodulators at the receiver are avoided.
Example:

A UE is allocated SF 4, code 3, on a set of timeslots corresponding to timeslot indices ti = {0, 1, 2, 3, 4}, CFN 12.
The hop index parameter sequence is hi = 12, 13, 14, 15, 0.

This is mapped into an effective code-hop sequence: SF4, codes {3, 1, 4, 2, 3}. These are the “root” nodes of the OVSF tree.

The UE implements an SF change to SF16 for the TTI.

For each timeslot, the SF is varied from the root node along the branch of the sub-tree with the higher code numbering. Thus SF16 codes {12, 4, 16, 8, 12} are transmitted.

2.5 Code Specific Multiplier
In existing releases a code specific multiplier (phase rotation) is applied to each channelisation code as defined in [3]. When code hopping is applied, the code specific multiplier would thus follow the hopping pattern such that the existing relationship between code and multiplier is preserved on each timeslot. If the SF is autonomously changed by the UE, the same rule as currently exists shall apply, with the clarification that the channelisation code specific multiplier is associated with the effective allocated OVSF code after the timeslot hop sequence has been applied (i.e. the root node may change on a per timeslot basis as a function of the hop sequence).

3 Simulation

The proposed code hopping scheme has been simulated and found to provide broadly similar gains to those seen in [1]. One example of the results is shown in Figure 3 and Figure 4 for the case of two SF4 users for a 4-slot allocation each E-DCH TTI. In the no-hopping case, the channelisation codes for the two users are selected randomly on a frame-by-frame basis and the same user code is applied for each of the 4 timeslots. In the hopping case, the channelisation codes for the two users are similarly randomly allocated on a frame by frame basis but the hopping pattern described in section 2.3 is applied such that the effective channelisation codes vary from timeslot to timeslot.
The timing of the users is varied within the timing advance accuracy of 4 chips (+/-2) and is applied randomly on a frame-by-frame basis. The channel model is ITU pedestrian-A at 3kmph.
[image: image3.emf]-8 -7 -6 -5 -4 -3

10

-3

10

-2

10

-1

10

0

Ec/No (dB)

BLER

Hopping off

Hopping on

Figure 3 – code hopping performance, two SF4 users, 1/3 rate turbo coding, Ped-A 3kmph

 [image: image4.emf]-2 -1 0 1 2 3 4 5

10

-3

10

-2

10

-1

10

0

Ec/No (dB)

BLER

Hopping off

Hopping on

Figure 4 – code hopping performance, two SF4 users, ¾ rate turbo coding, Ped-A 3kmph
4 Conclusion

A proposal for the implementation of intra-frame code hopping in 3.84Mcps TDD enhanced uplink has been presented. The proposal implements channelisation code hopping on a timeslot basis within the E-DCH TTI, whilst the scrambling code assignments are unchanged from current releases. Code diversity is thus provided without introducing backwards compatibility issues and without a requirement for cell ID re-planning in established networks.
When code hopping is employed, the existing associations between codes and midambles are retained such that impacts on existing receivers is minimised. The SF-backoff procedure is also harmonised with that of existing releases thus allowing for the seamless reuse of existing receiver structures.
The proposed code hopping patterns are orthogonal and hence retain the orthogonal code space allocations made by the scheduler throughout the hopping sequence. No additional physical layer signalling is required to support the proposed code hopping scheme.
RAN WG1 is kindly requested to consider the attached text proposal for TR 25.826.
5 References

[1]
TR 25.804 v6.0.0 “Feasibility Study on Uplink Enhancements for UTRA TDD”
[2]
TR 25.826 v1.0.0 “3.84Mcps TDD Enhanced Uplink; Physical Layer Aspects”
[3]
TS 25.221 v6.5.0 “Physical channels and mapping of transport channels onto physical channels (TDD)”
<<<<<<<<<<<<<<<<<<<<<<<<< start of text proposal >>>>>>>>>>>>>>>>>>>>>>>>>

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[<seq>]
<doctype> <#>[([up to and including]{yyyy[-mm]|V<a[.b[.c]]>}[onwards])]: "<Title>".

[1]
3GPP TR 25.804 (V6.0.0): "Feasibility Study on Uplink Enhancements for UTRA TDD".

[2]
3GPP TR 30.301: "RAN WG2 Stage 2 Decisions".

[3]
3GPP TS 25.222 “Multiplexing and Channel Coding (TDD)” (v6.2.0)
[4]
3GPP TS 25.223 “Spreading and Modulation (TDD)” (v6.0.0)

[5]
3GPP TS 25.331 “RRC Protocol Specification”

[6]
3GPP TS 25.225 “Physical Layer Measurements (TDD)”
[7]
3GPP TS 25.221 “Physical Channels and Mapping of Transport Channels onto Physical Channels (TDD)”
<<<<<<<<<<<<<<<<<<<<<<<<< next changed section >>>>>>>>>>>>>>>>>>>>>>>>>

8
Physical Channel Structure

8.1
Physical Channel Structure for Uplink Data Transmission

The E-PUCH is a new physical channel on which the CCTrCH of E-DCH type shall be mapped. The E-PUCH uses the same general burst structure as for existing uplink physical channels.

Figure 8.1.1 shows the generic burst structure for E-PUCH.

[image: image5.emf]payload 1 midamble payload 2

E-TFCI

TPC

guard

period

2560 chips

96 chips

256 or 512

chips

Figure 8.1.1 – E-PUCH Burst Structure

The E-PUCH supports the following physical layer characteristics:

· Payload spreading factors 16, 8, 4, 2, and 1

· TDD burst types 1 (512-chip midamble) and 2 (256-chip midamble)

· Transmission of E-TFCI <details FFS>

· Transmission of TPC - Note: this is used for E-AGCH power control purposes

· Guard period of 96 chips

· Support for timing advance

Default and UE-specific midamble allocation schemes may be applied to E-PUCH.
The slot formats applicable for E-PUCH are FFS (pending decision on E-TFCI and TPC transmission).
<<<<<<<<<<<<<<<<<<<<<<<<< next changed section >>>>>>>>>>>>>>>>>>>>>>>>>

10
Spreading and Modulation

<Editor’s Note: This section contains details of the spreading and modulation applied. Where applicable, separate sub-headings shall be created for each physical channel type. This section also includes the details of the higher order modulations for enhanced uplink and details of code diversity techniques>

10.1
Modulation
10.1.1
E-PUCH

QPSK and 16-QAM modulation are supported for E-PUCH. <details FFS>
10.2
Spreading
10.2.1
E-PUCH

Spreading of the E-PUCH follows the same general procedures as described in [4]. The complex symbols are multiplied by:

· A code specific multiplier (no spreading)

· A channelisation code spreading sequence (OVSF)

· A cell-specific scrambling code sequence

When channelisation code hopping is configured by higher layers, the allocated OVSF code
[image: image6.wmf]alloc

C

 (CRRI indicated in E-AGCH – see section 7.3.1.2.1) is transformed by the physical layer into a sequence of “effective” allocated OVSF codes
[image: image7.wmf]eff

t

i

C

, one for each active timeslot index “ti” {ti = 0 … nTRRI-1}.
In order to calculate the effective allocated code, the UE shall first calculate the timeslot index ti of each allocated timeslot. The set of nTRRI timeslots configured for E-DCH use is denoted tE-DCH (each element of tE-DCH may assume a value between 0 and 14).

The first element of tE-DCH is associated with ti = 0, the second element with ti = 1 and so on. ti = 0 therefore corresponds to the lowest numbered timeslot configured for E-DCH use and to the first element of the TRRI bitmap.
A hopping index parameter hi is calculated for each timeslot of the E-DCH TTI in which the UE has been allocated as follows:

[image: image8.wmf](

)

16

mod

CFN

t

h

i

i

+

=

The effective allocated OVSF code
[image: image9.wmf]eff

t

i

C

 for timeslot index ti is then derived from hi and the code indicated by the corresponding E-AGCH (
[image: image10.wmf]alloc

C

) as according to table 10.2.1.1.
	
	
	Hop index hi

	
[image: image11.wmf]alloc

C

	CRRI
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF16
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	15
	1
	9
	5
	13
	3
	11
	7
	15
	2
	10
	6
	14
	4
	12
	8
	16

	2
	16
	2
	10
	6
	14
	4
	12
	8
	16
	1
	9
	5
	13
	3
	11
	7
	15

	3
	17
	3
	11
	7
	15
	1
	9
	5
	13
	4
	12
	8
	16
	2
	10
	6
	14

	4
	18
	4
	12
	8
	16
	2
	10
	6
	14
	3
	11
	7
	15
	1
	9
	5
	13

	5
	19
	5
	13
	1
	9
	7
	15
	3
	11
	6
	14
	2
	10
	8
	16
	4
	12

	6
	20
	6
	14
	2
	10
	8
	16
	4
	12
	5
	13
	1
	9
	7
	15
	3
	11

	7
	21
	7
	15
	3
	11
	5
	13
	1
	9
	8
	16
	4
	12
	6
	14
	2
	10

	8
	22
	8
	16
	4
	12
	6
	14
	2
	10
	7
	15
	3
	11
	5
	13
	1
	9

	9
	23
	9
	1
	13
	5
	11
	3
	15
	7
	10
	2
	14
	6
	12
	4
	16
	8

	10
	24
	10
	2
	14
	6
	12
	4
	16
	8
	9
	1
	13
	5
	11
	3
	15
	7

	11
	25
	11
	3
	15
	7
	9
	1
	13
	5
	12
	4
	16
	8
	10
	2
	14
	6

	12
	26
	12
	4
	16
	8
	10
	2
	14
	6
	11
	3
	15
	7
	9
	1
	13
	5

	13
	27
	13
	5
	9
	1
	15
	7
	11
	3
	14
	6
	10
	2
	16
	8
	12
	4

	14
	28
	14
	6
	10
	2
	16
	8
	12
	4
	13
	5
	9
	1
	15
	7
	11
	3

	15
	29
	15
	7
	11
	3
	13
	5
	9
	1
	16
	8
	12
	4
	14
	6
	10
	2

	16
	30
	16
	8
	12
	4
	14
	6
	10
	2
	15
	7
	11
	3
	13
	5
	9
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF8
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	7
	1
	5
	3
	7
	2
	6
	4
	8
	1
	5
	3
	7
	2
	6
	4
	8

	2
	8
	2
	6
	4
	8
	1
	5
	3
	7
	2
	6
	4
	8
	1
	5
	3
	7

	3
	9
	3
	7
	1
	5
	4
	8
	2
	6
	3
	7
	1
	5
	4
	8
	2
	6

	4
	10
	4
	8
	2
	6
	3
	7
	1
	5
	4
	8
	2
	6
	3
	7
	1
	5

	5
	11
	5
	1
	7
	3
	6
	2
	8
	4
	5
	1
	7
	3
	6
	2
	8
	4

	6
	12
	6
	2
	8
	4
	5
	1
	7
	3
	6
	2
	8
	4
	5
	1
	7
	3

	7
	13
	7
	3
	5
	1
	8
	4
	6
	2
	7
	3
	5
	1
	8
	4
	6
	2

	8
	14
	8
	4
	6
	2
	7
	3
	5
	1
	8
	4
	6
	2
	7
	3
	5
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF4
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	3
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4

	2
	4
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3
	2
	4
	1
	3

	3
	5
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2

	4
	6
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1
	4
	2
	3
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF2
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	1
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2

	2
	2
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1
	2
	1

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	SF1
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	1
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1
	1

For all subsequent operations, the physical layer shall assume the allocated physical resources to be described by the effective allocated code
[image: image12.wmf]eff

t

i

C

 associated with the current timeslot.

The following rules apply in the case of code hopping:
· If higher layers select an E-TFC with a spreading factor greater than the allocated spreading factor, the OVSF code shall always be varied (by the physical layer) along the branch of the OVSF sub-tree with the higher code numbering in accordance with [7]. The root node of the OVSF sub-tree (under which the SF increase may be applied) is the effective allocated OVSF code
[image: image13.wmf]eff

t

i

C

 after the timeslot hop sequence has been applied to the allocated OVSF code
[image: image14.wmf]alloc

C

 (ie: the root node may change on a per timeslot basis as a function of the hop sequence).

· Under default midamble allocation, the actual transmitted midamble is mapped to the actual transmitted code as per the normal default code/midamble mappings of [7]. “Actual” transmitted code refers to the code transmitted over the air (after the code hopping sequence and autonomous SF selection procedures have been applied by the UE).
· A channelisation code specific multiplier is applied to E-PUCH transmissions. The multiplier is associated with the effective allocated code
[image: image15.wmf]eff

t

i

C

 and remains unchanged in the event that the spreading factor is autonomously increased by the UE (as per existing releases).
· A common scrambling sequence is applied to all E-PUCHs within the frame. The assigned scrambling sequence is a function of the cell ID and on whether the frame number is odd or even, in the same manner as existing releases.

<<<<<<<<<<<<<<<<<<<<<<<<< next changed section >>>>>>>>>>>>>>>>>>>>>>>>>

11.3
Channelisation Code Hopping
When channelisation code hopping is configured by higher layers, the allocated OVSF code (i.e. the CRRI indicated in E-AGCH – see section 7.3.1.2.1) is first transformed by the physical layer into a sequence of “effective” allocated OVSF codes (one for each active timeslot of the allocation) before further physical layer processing is performed (see figure 11.3.1). The mapping of CRRI to effective OVSF allocation is a function of the allocated timeslots and of the current CFN. See section 10.2.1 for further details.

[image: image16.emf]E-AGCH carrying

CRRI field (OVSF

code allocation)

Mapping to effective

OVSF code

allocation for each

allocated timeslot

timeslot

index

CFN

actual physical

resource allocation

physical layer

Physical Layer

Spreading and

Modulation

Figure 11.3.1 – physical layer interpretation of OVSF code allocation in the case that code hopping is applied
<<<<<<<<<<<<<<<<<<<<<<<<< end of text proposal >>>>>>>>>>>>>>>>>>>>>>>>>
_1176638372.unknown

_1202819747.unknown

_1202819443.unknown

_1202819469.unknown

_1202731269.unknown

_1008190226.unknown

_1008190402.unknown

