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1. Introduction

     In this contribution, we propose the parity-check matrix construction of RC(Rate-Compatible)-LDPC codes to achieve better performance for wide range of code word length and code rate. We inform the parity-check matrix construction method which can support the code rate range from 1/3 to 4/5, the information length range from 180bits to 5000bits, and show the performance in this contribution. As the results of simulations, we could confirm that the RC-LDPC codes can achieve good performance for wide range of code word length and code rate.   
Furthermore, we can show the RC-LDPC codes are equal to and better BLER performance than the 3GPP Turbo codes under practical decoding algorithms (sub-optimal decoding) except for less than 1000 information bits at code rate 1/3.

We believe that the RC-LDPC codes are feasible. So, we propose that the possibility of using LDPC codes for LTE system is studied as working assumption. 
2. Performance evaluation for low-rate with RC-LDPC codes 
In this paper, we compare the BLER performance of the following codes.

· Turbo code : Parallel-concatenated Turbo code (R99 Turbo code) 

· LDPC code : Rate Compatible (RC)/Quasi Cyclic (QC) LDPC code [1]

We employ the following decoding algorithms

1) Optimum decoding: Log-MAP, layered BP[4]
2) Sub-optimal decoding: Normalized MAX-Log-MAP[5], layered -min [1][6]

*Please note that Approximated Layered Log BP (Offset BP type) could be defined as sub-optimal decoder for LDPC codes as mentioned in the contribution [7]. In this moment, we are lack of time to simulate based on such algorithm, so we showed the results based on layered -min.

Table 1 gives the parameters used in the comparisons.
Table 1 – Parameters
	Coding rate 
	1/3, 1/2, 2/3, 3/4

	Channel model
	AWGN

	Decoding schemes
	(1)Optimal decoding:

-Log-MAP(Turbo,ite:8), Layered delta-min (LDPC,ite:30)

(2)Sub-Optimal decoding:

- Normalized MAX-Log-MAP(Turbo, ite:8, scaling factor=0.75),

-Layered delta-min (LDPC, ite:30)


We show the required average received Eb/N0 at the average BLER=10-2 according to information length for the RC-LDPC codes defined in section 3 and 3GPP turbo codes using sub-optimal decoding , and optimal decoding in the figure 1, and the figure 2, respectively. The proposed RC-LDPC codes can achieve good performance and be stable for wide range of code word length and code rate. We can show the RC-LDPC codes are equal to and better BLER performance than the 3GPP Turbo codes under practical decoding algorithms except for less than 1000 information bits at code rate 1/3. After all, RC-LDPC codes can be better BLER performance than the 3GPP Turbo codes in almost every case with the range of code rate more than 1/3 under practical decoding algorithms (sub-optimal decoding).
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Figure 1. Required average received Eb/N0 at the average BLER of 10-2 according to information length(180-5000bits), RC-LDPC codes vs 3GPP turbo codes, code rate = 1/3, 1/2, 2/3, 3/4, Sub-optimal decoding.
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Figure 2. Required average received Eb/N0 at the average BLER of 10-2 according to information length(180-5000bits), RC-LDPC codes vs 3GPP turbo codes,, code rate = 1/3, 1/2, 2/3, 3/4 Optimal decoding,.

3. Basic Scheme of RC-LDPC codes 
　The changing points from R1-051383 are as follows,

(1) The generation rule of quasi-cyclic matrix 
[image: image3.wmf]BL

H

.

   (2) The size and pattern of the masking matrix 
[image: image4.wmf]Z

.
  Other parts are the same as R1-051383. We explain the above changing points in the subsection 3.1.
3.1 Code structure and code description

 　In this subsection we explain the basic construction of the proposed RC-LDPC codes. Let 
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 be a prime number. The base parity-check matrix over 
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For example, 
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Let 
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The position indicated by the above rectangular is the changing point (1).
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This product defines a masking operation for which a set of permutation matrices in 
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 is masked by zero-entries of 
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. The distribution of the permutation matrices in 
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 is the same as the distribution of 1-entries of 
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.

Our proposed RC-LDPC code 
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is defined as the null space of a parity-check matrix 
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Hence, we can give a parity check matrix 
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 for a LDPC code 
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by designing only a masking matrix 
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. 
As we can see, the information block size K = N-M and N is the code word block size. Through changing 
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, a LDPC set of variable information length for various code rates can be obtained.
   The parity check matrix of LDPC codes can be fully described by only small parameters of 
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 is prepared a binary 72x 36 matrix for all codeword length.
  The masking matrix 
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’s are designed to be avoided short cycles according to an appropriate degree distribution.

  We show an example of　a masking matrix 
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for equal to and more than code rate 1/3 as follows; 
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The position indicated by the above rectangular is the changing point (2).

Let 
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The information block sizes of LDPC codes 
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The RC-LDPC encoder consists of a common LDPC encoder and a puncturing device. The decoder for RC-LDPC codes is the same as an ordinary LDPC decoding algorithm with received LLR=0 for puncturing bits.

 The mother code rate for 
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A set of code rates and a puncturing bits set 
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 for RC-LDPC codes can be represented by:

For a code rate
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 This procedure can make the RC-LDPC codes for code rates 1/3, 1/2, 2/3, 3/4,….

Of course, RC-LDPC codes with smaller step code rates can be made easily as similar schemes.
4. Conclusion
We proposed the parity-check matrix construction of RC-LDPC codes with wide range of codeword length coverage from R1-051383 to achieve better performance for wide range of code word length and code rate. And we showed the simulation results for wide range of code word length at any code rates. We can confirm that the proposed RC-LDPC codes can achieve good performance and are very stable for wide range of code word length and code rate. So we believe that the proposed RC-LDPC codes become more feasible. Moreover, as mentioned in [7], 　RC-LDPC codes can easily achieve over 100 Mb/s throughput thanks to easy parallel operation and are better than and equal to 3GPP turbo codes with respect to performance, complexity, and flexibility of code rate.
Therefore, the possibility of using LDPC codes for LTE system should be studied as working assumption.. A text proposal is prepared in the contribution R1-060915[2].
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