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1. Introduction

LDPC codes have higher decoding throughput than 3GPP Turbo codes as shown in [1][2]. However, the parallel operation for Turbo decoding is mentioned in [3].  In this contribution, we provide computational complexity and memory size under the condition of parallel operation for over 100Mb/s throughput. 
As the results of analysis, we can confirm that LDPC codes can achieve 100Mb/s throughput without increment of computational complexity and memory size. On the other hand, turbo decoder can not avoid increment of computational complexity and memory size due to parallel operation.
2. Complexity comparison in the case of parallel operation
In this paper, we compare the computational complexity and memory size of the following codes.

· Turbo code : Parallel-concatenated Turbo code (R99 Turbo code) [4]

· LDPC code : Rate Compatible (RC)/Quasi Cyclic (QC) LDPC code [1]

In LDPC code, we employ the following decoding algorithms

1) Optimum decoding: Shuffled belief propagation algorithm[5]
2) Sub-optimal decoding: Normalized MAX-Log-MAP with parallel sliding window algorithm [6][5], Cyclic approximated -min algorithm [7][8]
Table 1 gives the parameters used in the comparisons.
Table 1 – Parameters
	Coding rate 
	1/2 (Punctured codes from the base matrix for coding rate 1/2 is used to achieve high throughput)

	Information length
	1476 bits

	Channel model
	AWGN

	Decoding schemes
	-Cyclic approximated delta-min (LDPC codes)
- Normalized MAX-Log-MAP with parallel sliding window (Turbo codes)

Sliding Window margin (trellis training length) = 32

Sliding Window bits = 256


Figure 1 shows memory size comparison results between Turbo and LDPC decoders. We assume parallel operation to achieve high throughput, LDPC decoder does not need to increase the memory size in spite of increment of the number of parallel operation. However, turbo decoder needs to increase the memory size according to the number of parallel operation.   
 Figure 2 shows the computational complexity per information bit of the sub-optimum decoding with parallel operation. We assume the calculation costs for the respective operations to be, for example, 1:1:10 for Addition, Comparison, and Multiplication, respectively [9] [10]. We can confirm that LDPC decoder can avoid increase of the computational complexity in spite of increment of the number of parallel operation. However, turbo decoder can not avoid increase of the computational complexity according to the number of parallel operation.
As mentioned in [1], the throughput by the serial operation of the turbo decoder is around 5Mb/s (the clock frequency:100MHz). So At least 20 parallel operations are needed to achieve 100Mb/s throughput, even if it is assumed ideal condition. Practically, more than 40 parallel operations for the turbo decoder might be needed
 [image: image1.emf]0
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Figure 1. Memory size comparison between turbo and LDPC decoders 
[image: image2.emf]0

100000

200000

300000

400000

500000

600000

700000

1 2 4 6 12 24 47 93

Parallel num

Calculation costs (the number of calculation)

Normalized Max-Log-MAP with parallel sliding

window

Cyclic Approximated δ-Min


Figure 2. Computational complexity comparison between turbo and LDPC decoders 

3. Detail of comparison results
3.1 Decoding method description of LDPC codes

In [7][8], decoding method has been given, and the decoding structure is very simple, for various code rate , RC-LDPC codes [1] of different code sizes will use a uniform hardware structure.
This proposed algorithm can be applied to most of BP-based algorithm such that UMP BP-based (Min-Sum) algorithm, normalized BP-based algorithm or 
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-min algorithm. 

This algorithm only needs real additions and comparisons, and is universal as it does not need any knowledge about the channel characteristics and code construction. Furthermore, this scheme can shrink the memory of 
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In the following, we assume BPSK modulation, which maps a codeword 
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We assume all the messages passing between bit and check nodes are in the form of log-likelihood ratios (LLR’s). For 
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th iteration, we define the following notation.
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We show the cyclic approximated 
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Step 1: Initial Step

For each 
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For the 
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iteration, the Cyclic approximated min algorithm includes three steps as follows. 
Step 2 : Horizontal step (processing in check nodes)
   For 
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Step 3: Vertical step (processing in bit nodes)
For each 
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For each 
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Step 4: Hard decision and stopping criterion test
I. Create 
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II. If 
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 is considered as a valid decoded word and the decoding process ends; if the number of iterations exceeds some maximum number and 
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 is not a valid codeword, a failure is declared and the decoding process ends; otherwise the decoding repeats from Step 2.
According to the above algorithm, we show a hardware design example for RC-LDPC codes in the Figure 3.
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Figure 3 overall hardware structure of the decoder of RC-LDPC codes

3.2 Decode method description in detail to evaluate its complexity
We consider in general that the analysis of complexity for sum-product & Log-MAP algorithm are appropriate in [11]. From a practical perspective, we analyze the simple decoder with small degradation in [1]. 

In [7][8], low complexity and memory reduced decoding method named “Cyclic Approximated 
[image: image68.wmf]d

-min algorithm” has been given. The method calculates with only r’(= k in the previous subsection : example r’=3) minimal value of LLRs from check nodes to variable nodes. On this scheme, we memorize only r’ LLRs per a row, and we can reduce the iteration numbers from general LDPC decoding algorithm. 

  Figure A1(appendix A) gives the overall hardware structure of Cyclic Approximated 
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-min decoder. Cyclic Approximated 
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-min decoder is mainly structured by two update function unit CNFU(check node function unit) and VNFU(variable node function unit) and 4 memories for k minimal LLRs, sign of all nodes, received data and syndrome. 

    Figure A2(appendix A) gives the construction of CNFU. CNFU performs check node update using r’(example r’ = 3) minimal LLRs and column number. In Figure A2(appendix A), “sel” selects 2 minimal LLRs except its own information, and computes update information based on 
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-min decoding algorithm. (“c” is a constant factor.) 

Figure A3(appendix A) gives the construction of VNFU. VNFU performs variable node update using LLRs from CNFU and sign information. In Figure A3(appendix A), r’ minimal LLRs select unit MINU update r’ minimal LLRs and access to r’ minimal LLRs memory. Figure A4(appendix A)gives the construction of MINU. MINU compares updated LLRs with memorized LLRs without its own node and access to r’ minimal LLRs memory.
3.3 Comparison of low complexity LDPC decoder and Turbo decoder
 We compare the memory size and complexity of two low complexity decoding method. As we show the performance in [1], fixed point Cyclic Approximation 
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-min decoding for LDPC Codes has good performance with small quantization bit. And Max-log-MAP with Sliding Window decoding can reduce the memory requirements. However, when we assume the parallel operation for Max-log-MAP with sliding window, the memory size is increased according to the number of parallel operation. 
For LDPC Codes, N : code block length, c : column weight, r : row weight, and r’ : the number of memorized LLRs for Cyclic Approximated min decoding algorithm. The complexity of Cyclic Approximation 
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-min is shown as following. 
Memory

Received value : x (bit) * N
Sign information : 1(bit) * r * M

Syndrome : 1(bit) * M

Minimal LLRs : y(bits) * r’ * M

Minimal indexes : z(bits) * r’ * M

Decoded data : 1(bit) * N

Mask Matrix for Codes : 1296(bits)

Total (x + 1)N + [ r + 1 + (y + z) * r’ ]M + 1296
Operations for 1 iteration
Add : ( 5c - 1)N
cN : sum all node information for variable node update

( c - 1 )N : exclusion of its own information for variable node update

2cN : compute of correcting value for check node update

cN : compute of minimal value for check node update
Compare : ( r’ - 1 )cN
( r’ – 1 )cN : memory of r’ minimal values when variable node update

1 bit ExOr : 2cN
cN : compute of syndrome for variable node update

cN : compute of sign for variable node update

Total : ( ( 6 + r’ )c - 1 )N
For Turbo Codes, M : information bit length + tail bits, k : memory order, and sliding window width is 256, sliding margin is 32. The complexity of Max-Log-MAP based on Sliding Window algorithm is shown as following.
Memory

Received value : x(bits) * (2*M + 12)
Extrinsic value : y (bits) * M

Metrics : z(bits) * 
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Decoded date : 1(bit) * M

PIL table : w(bits) * M

Total : (2x + y + w + 1)M + z * 
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Operations for 0.5 iteration

Add : ( 8 *
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2M’ : compute extrinsic value
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　Table 2 shows the comparison of memory size between turbo and LDPC codes without parallel operation. Table 3 shows the memory size of Normalized MAX-Log-MAP with parallel sliding window. Table 3 indicates only difference of metrics and total memory size from non parallel operation. And Figure 3 shows the memory size comparison between turbo and LDPC decoders. 
 For LDPC Codes, (N, M, r, c) = (2952, 1476, 8, 3.4), r’ = 3, and x = 4 ( including 1 sign bit), y = 5, z = 3. For Turbo Codes, (M, k) = (1476, 4), M’ = M + 3(for tail bits), and x = 6 ( including 1 sign bit), y = 6, z = 10. w = 11.
Table 2 The comparison of memory size without parallel operation
	[LDPC] Cyclic Approximated 
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-min
	[Turbo] normalized Max-Log-MAP with sliding window

	
	bit size
	requirement
	
	bit size
	requirement

	received value
	4
	2952
	received value
	6
	2*1476+12

	Sign information
	1
	8* 1476
	extrinsic value
	6
	1476

	syndrome
	1
	1476
	Metrics (1)
	10
	8*256

	minimal LLRs
	5
	3*1476
	decode bits
	1
	1476

	minimal indexes
	3
	3*1476
	PIL Table
	11
	1476

	decoded bits
	1
	2952
	
	
	

	Mask Matrix
	1296
	1
	
	
	

	Total
	64764 bits
	Total(2)
	64832 bits


Table 3. The memory size comparison of parallel decoding for MAX-Log-MAP
	No. of Parallel
	serial
	2 parallel
	4 parallel
	6 parallel

	Metrics (1)
	8*256
	8*256*2
	8*256*4
	8*(256*5+196)

	Total(2)
	64832(bits)
	85312(bits)
	105792(bits)
	162432(bits)

	No. of Parallel
	12 parallel
	24 parallel
	47 parallel
	93 parallel

	Metrics (1)
	8*(128*11+68)
	8*(64*23+4)
	8*(32*46+4)
	8*(16*92+4)

	Total(2)
	162432 (bits)
	162432 (bits)
	162432 (bits)
	162432 (bits)
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Figure 3. the memory size comparison between turbo and LDPC decoders 
Table 4 shows the comparison of computational complexity between turbo and LDPC codes without parallel operation. Table 5 shows the computational complexity of Normalized MAX-Log-MAP with parallel sliding window. And Figure 4 shows the memory size comparison between turbo and LDPC decoders.

Table 4 The comparison of computational complexity without parallel operation
	[LDPC] Cyclic Approximated 
[image: image98.wmf]d

-min
	[Turbo] normalized Max-Log-MAP with sliding window

	Add
	(5c – 1)N
	47822
	add
	( 8 *
[image: image99.wmf]1

2

-

k

 + 6 )M’ + ( 2*
[image: image100.wmf]1

2

-

k

*32 + 3 )

*(
[image: image101.wmf]ë

û

256

/

'

M

)
	106105

	Compare
	(r’ – 1)cN
	20310
	compare
	( 4*
[image: image102.wmf]1

2

-

k

-2 )*M’ + (
[image: image103.wmf]1

2

-

k

*32 )*(
[image: image104.wmf]ë

û

256

/

'

M

)
	45650

	
	
	
	product
	10*M
	

	1bit ExOr
	2cN
	20310
	

	Total
	88432 for 1 iteration
	Total
	166515 for 0.5 iteration


Table 5 Complexity comparison of parallel decoding(per 1 iteration)
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Figure 4. Computational complexity comparison between turbo and LDPC decoders 

The ratio of complexity for one iteration is Cyclic Approximated 
[image: image154.wmf]d

-min : Max-Log-MAP based on Sliding Window = 88432 : 166515 * 2 = 1 : 3.76. When Turbo decoder iterate 8 times, LDPC decoder can iterate 30 times. By similar way, we show the effects of parallel operation in table 6.

   Table 6. The number of iteration for the cyclic approx. 
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-min & normalized 

MAX-log-MAP:SW 

	
	The number of Iteration

	The number of parallel operation
	1
	2
	4
	6
	12
	24
	47
	93

	LDPC codes (Cyclic approx. 
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-min)
	30
	30
	31
	31
	32
	36
	42
	55

	Turbo codes (MAX-log-MAP:SW)
	8
	8
	8
	8
	8
	8
	8
	8


As we all know, the new coming LTE PHY layer needs very high throughput. Actually it is necessary for turbo codes to increase memory size and computational complexity. However the LDPC codes encoder & decoder can easily satisfy the throughput requirement without increment of memory size and computational complexity.

4. Conclusion
In this contribution, we provide computational complexity and memory size under the condition of parallel operation for over 100Mb/s throughput. 

As the results of analysis, we can confirm that LDPC codes can achieve 100Mb/s throughput without increment of computational complexity and memory size. On the other hand, turbo decoder can not avoid increment of computational complexity and memory size due to parallel operation. 
Therefore, the possibility of using LDPC codes for LTE system should be studied as working assumption. A text proposal is prepared in the contribution R1- 060505 [2]. 
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Appendix A. Circuit blocks for the cyclic approx. 
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Figure A1 overall hardware structure
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Figure A2  construction of CNFU
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Figure A3　construction of VNFU
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Figure A4　construction of MEMU
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