3GPP TSG RAN WG1#44
R1-060513
Denver, USA, February 13th – February 17th, 2006
Agenda Item:
13.2.2.4
Source:
CCL/ITRI
Title:
UTRA release 6 turbo coding compatible high throughput architecture with low up-gradation cost
Document for:
Discussion
1 Introduction

UTRA release 6 turbo coding compatible architecture called inter-block permutation turbo code (IBPTC) is presented in this contribution. Periodic permuting multiple block-interleaved sequences by an inter-block permutation (IBP) interleaver, an IBPTC can be built upon 3GPP/3GPP2 defined turbo codes as well as DVB-RCS/RCT defined double binary turbo codes. Applying existing convolutional code encoders and block interleavers, all related conventional APP decoders and interleavers are reusable. Moreover the turbo codes used in 3GPP/3GPP2/DVB-RCS/DVB-RCT are regarded as special cases of our code and backward compatibility is nature. Obviously, the evolution from existing standard turbo codes to the IBPTC is easy and an extra periodic permutation is low cost.

High throughput capability and parallelism are inherent IBPTC features and memory bank access collision which mainly decreases turbo code decoder throughput is naturally avoided. IBP interleaver (IBPI) is constructed by inter-connecting the same multiple block interleavers. The interleaver is structurally constructed. Structural interleaver provides parallel interleaving capability. Periodic inter-connecting the same block interleavers avoids memory bank access collision. Highly parallel memory access is therefore feasible and decoding throughput can be largely increased. Multiple data sequences can be decoded in parallel and any throughput is achievable.

Periodic IBP interleaving provides flexibility in data length, performance, IBPI construction, memory bank size and implementation cost. Increased the inter-connected block number lengthens the data length. Increasing IBP period enhances performance under the same block size. Large block size with short IBP period and short block with large IBP period are usable for IBPI construction to achieve similar performance. The block size can be reduced to match economic memory bank size without performance loss. Low memory cost and high parallel decoder is feasible by shortening memory bank size. IBPTC possesses large degree of freedom in data length, performance, memory size and parallelism.
Depending on the degree of parallelism, the IBPTC decoder is modular and flexible to meet a large range of throughput and performance demands. The decoder is distributive; APP decoders, IBP interleaving/de-interleaving modules and memory are decoder modules and shared. The structure of the IBPI also allows flexible degrees of parallelism, making possible highly parallel memory access without memory access collision and therefore greatly increasing the decoder throughput. Multiple data sequences can be decoded in parallel and throughput is limited only by the degree of parallelism bestowed in the design. One can design a decoding schedule to coordinate these modules and to enhance performance. These features support reconfigurability and it highly suits software define radio (SDR), cognitive radio (CR) and DSP based architecture.
IBPTC matches application layer FEC, raptor code or LT code, which are widely discussed. IBPTC is a streaming type code which is the same as these codes. IBPTC provides high error detection capability with only 8-bit CRC code and error detection decision can be used for application layer FEC to decode. Short block length also reduces buffer size storing large temporary data in upper layer. IBPTC is a perfect match to application layer FEC.
IBPTC is future compatible. Any throughput demand is attainable by increasing parallelism in terms of number of computation processors. Performance also increases with the interleaver span and this only changes inter-block permutation period. Modular design reduces future software defined radio and cognitive radio expense. Multiple processors coordination can also be implemented by software. Therefore, IBPTC matches all demands without violating existing design and should be considered as a candidate for the next generation communication system.
2 Encoding and interleaving method
2.1 Encoding method
Figure 1 demonstrates an encoder of IBPTC [1] and IBPTC is backward compatible. The encoding operation is similar to the conventional turbo codes, except for the proposed inter-block permutation interleaver (IBPI). An IBPI is constructed by inter-connecting multiple block interleavers without large prolonged interleaving latency and we will detail its operation later. Existing block interleaver such as 3GPP defined interleaver can be used as intra-block interleaver and therefore backward compatibility is feasible. According to termination methods and component code, we categorize the IBPTC as the tail-padding IBPTC (IBPTC-TP), tail-biting IBPTC (IBPTC-TB), and inter-block permutation double-binary turbo code (IBPDTC). The turbo code defined in 3GPP terminates code by tail-padding encoding and the double-binary turbo code defined in DVB-RCS/RCT is terminated by tail-biting encoding.
[image: image1.jpg]
Fig. 1: IBPTC encoder.

2.2 Periodical Inter-Block Permutation Algorithm
The IBPI is composed of two-stage interleaving: intra-block interleaving and inter-block interleaving. In addition to the intra-block interleaving in the conventional turbo code, the IBPTC encoder performs an extra inter-block interleaving to permute the intra-block permuted sequence and short length intra-block interleaving is enough for excellent performance. IBP algorithm is simple and possesses the high performance. Periodical permutation [1] is the best rule for Inter-block permutation algorithm. Periodicity also leads the least complexity. In other words the simplest algorithm leads the best performance.
Interleaver span S, IBP parameter, indicates how many blocks are inter-block permuted. Figure 2 demonstrates an example of the IBPI with the span S=1. At first, the 2nd block is intra-block permuted. Then the block is permuted with the 1st and 3rd blocks and outputs the 1st block whose permutation is finished. Note that both inter-block and intra-block interleaving can be combined into one stage interleaving.
Interleaver span also determines the performance and adjusting the span is trivial. The larger span implies the more block information acquired after one APP decoding round. The larger span also improves distance properties [1]. Interleaver span only influences the IBP period [1]. Therefore this code is very flexible to adjust performance.

Interleaver span determines the interleaving latency. The larger span implies that interleaver requires more blocks to output permuted sequence and therefore interleaving latency is prolonged. The interleaving latency in the IBPTC is (S+1)L symbols, where L is block length. Therefore there is a trade-off between interleaver span and interleaving latency.

[image: image2.jpg]
Fig. 2: An example of the IBPI with 5 blocks.

An exemplary IBP algorithm is disclosed in Table 1 [1] to demonstrate regularity and simplicity. This algorithm supports any block length and interleaver span. S is interleaver span. N is total block number. L is block length. D(m,k) is the symbol at the mth position of the kth block. The Line 40-70 calculates initial positions. The Line 90 swaps symbols. The Line 100 goes to next position to perform swap operation. IBP regularly interleaves symbols with period 2S+1 which is shown in the Line 100. This provides regularity and simplicity.

Table 1: An exemplary IBP algorithm.

	10 for K=0 to N-1
20 { for i=0 to i=S-1
30 { if (K-i > 0)
40 { if (K mod (2·(i+1)) < i+1)
50 { set m=2·i+1 }
60 else
70 { set m=2·i+2 } }

80 while (m < L)
90 { swap D(m,K) and D(m,K-i-1)
100 set m=m+2S+1 } } }

IBP algorithm is not unique. Performance is insensitive to various IBP algorithms. [1] provides a universal IBP design rule. One can follow the rule to an IBP algorithm.

3 Decoding methods
Inter-connected multiple blocks can be decoded cooperatively and the performance is enhanced. In Figure 2, after each APP decoding round, one block extrinsic information is passed to two sided blocks. The more decoding rounds, the farther it passed. Take Fig. 2 and the 3rd block as an example. After the first APP decoding round, the information is passed to the 2nd and the 4th blocks. After the second APP decoding round, the information is passed to the 1st and the 5th blocks. After two APP decoding rounds which is equivalent to one iteration, the information is passed to five blocks and in other words the five block information is passed to the 3rd block for next round APP decoding. Therefore short length block can achieve high performance.

The IBPTC encodes each block individually and it implies parallel processing capability. Take Figure 2 as an example, 5 blocks can be decoded in parallel. Meanwhile, multiple decoders can operate in parallel and high throughput is feasible. We will show two kinds of decoder architecture in the following. The first one is an intuitive realization but complex design. The second one is modified from the first one by introducing a control unit to determine decoding procedure. Both decoder architectures can reuse original APP decoder and interleaver design and backward compatible is feasible
3.1 Pipeline Decoder
Figure 3 shows a pipeline decoder. The decoder is serially concatenated by decoding modules which is shown in Figure 3 (a). The decoding module is composed of two a posteriori probability (APP) decoders, two interleavers and two de-interleavers. The decoding time gap of adjacent APP decoders is (S+1)L symbols. The 1st and 2nd APP decoders manipulate the received sequences corresponding to pre-permutation and post-permutation codewords, respectively.
[image: image3.jpg]
Fig. 3: The pipeline decoder.

This decoder is the most efficient and the fastest realization under a fix number of iteration. The decoded information is passed into interleaver. The interleaver permutes the interleaved information and output the previous (S+1)th block to the next APP decoder. The decoding latency is minimized. APP decoders and memory requirement are also minimized.

The decoder is inflexible and does not suit for varying termination scenario. The numbers of APP decoders, memory and interleavers are linear to maximum number of iterations. Decreasing the number leads lower complexity but worse performance. As cooperating with stopping mechanism, tailing APP decoders become an over design at high SNR. Therefore the following architecture provides a flexible alternative.
3.2 Dynamic decoder
Figure 4 shows a dynamic decoder for IBPTC. The decoder is constructed by a control unit, APP decoders, memory and IBP interleaver/de-interleaver. The control unit coordinates APP decoders and IBP interleaver/de-interleaver. These components access memory to accomplish decoding procedure. The memory stores both received samples and temporary extrinsic information. This distributive decoder architecture provides high flexibility on cost and performance in terms of throughput.
[image: image4.jpg]
Fig. 4: The dynamic decoder.
Flexible decoding procedure and modular architecture are its features. Decoding schedule is embedded in the control unit and is modifiable. Throughput, performance, computation and storage requirement are adjustable by a proper schedule. APP decoder, IBP interleaver/de-interleaver and memory are modular and reconfigurability is high. The total number of APP decoders is also flexible and the trade-off between complexity and throughput is feasible. The decoder is very flexible to match different concerns.
Table 2: Comparison of Required Memory Units for Various TCs.

	APP decoder number
	IBPTC Schedule A
	IBPTC Schedule B
	3GPP TC L=400
	3GPP TC L=800
	3GPP TC L=1600
	3GPP TC L=3200
	3GPP TC L=5114

	1
	50
	70
	5
	10
	20
	40
	65

	2
	55
	74
	10
	20
	40
	80
	130

	5
	70
	86
	25
	50
	100
	200
	315

	10
	95
	106
	50
	100
	200
	400
	650

	20
	145
	146
	100
	200
	400
	800
	1300

	50
	295
	266
	250
	500
	1000
	2000
	3250

The decoder can achieve any high throughput. IBP interleaver/de-interleaver avoids memory access collision in the memory. Due to interleaver architecture multiple APP decoders can access and output in parallel without memory access collision which is the main problem for the throughput of conventional turbo decoder and LDPC code decoder. Short block size leads the short memory bank possible without performance degradation. The short memory bank provides parallelism in implementation and throughput can increase with the number of memory bank. The decoder can process multiple blocks of the same APP decoding round at one APP decoding round and therefore the decoder can provide higher throughput than the pipeline decoder. The decoder possesses extremely high throughput potential.
Table 2 shows an exemplary memory usage comparison. Code rate=1/3 is chosen. We adopt block length L=400 IBPTC. We compare 3GPP turbo code with L=400, 800, 1600, 3200, and 5114 bits. We count memory by a memory unit and one memory unit stores 400 soft-bits. One block IBPTC codeword requires 3 memory units to store received samples. 3GPP Turbo code with L=800 bits requires 6 memory units to store received samples.
We compare the required memory usage under the same APP decoder number which indicates throughput. 3GPP turbo code is not optimized for parallel processing and each codeword can be processed by one APP decoder without memory access collision. We consider APP decoder number=1, 2, 5, 10, 20 and 50. Therefore the required memory usage is linear to APP decoder number. Two decoding schedules are used for IBPTC. Our code performance is similar to 3GPP turbo code with L=3200 bits. IBPTC decoder applying schedule A requires memory slightly larger than 3GPP turbo code with L=3200 as APP decoder number=1. As APP decoder number=2, IBPTC decoder applying both decoding schedule requires fewer memory units than 3GPP turbo code with L=3200. As APP decoder number = 5, IBPTC decoder requires memory usage less than 3GPP turbo code with L=1600. As APP decoder number = 20, IBPTC decoder requires memory usage similar to 3GPP turbo code with L=800. As the required throughput is higher, the save memory usage is more significant. We can further reduce block size and the saved memory usage is more significant. We conclude that IBPTC is a low cost solution for high throughput application.

Table 3. Comparison of Required Memory Units for Various TCs.

	Design
	Radix-4x4

Max-Log-MAP Decoder

	Technology
	1.2V 0.13um

	Block size (window size)
	1200 bits (20 bits)

	Core area (um2)
	1400 x 1400

	Total gate count
	220K

	Maximum operating Frequency
	238 MHz (worst case)

	Data rate (MS/s)
	952 Mbps

	Average power (supply power)
	528 mW (1.32V)

Table 3 demonstrates an exemplary APP decoder parameters and one can evaluate the corresponding throughput and power consumption through operating frequency and average power.
4 Performance
The following provides performance results. 3GPP [4] and DVB-RCS/RCT [6] defined turbo codes are used in the simulations. Intra-block interleaver is adopted from both standards. For the 3GPP defined turbo codes, we firstly consider influences. Then schedule effect is evaluated. In the next we consider code rate=1/3 performance. At last, we evaluate performance over various cod rates and modulations. For the DVB-RCS/RCT defined turbo code, we evaluate performance over different IBP algorithm and schedules.
4.1 3GPP Turbo Code
4.1.1 Interleaver span
Increasing interleaver span enhances performance. At first, a short block size is used to demonstrate the performance. Then we evaluate the performance over the same interleaving latency [1]. At last we evaluate the performance of the moderate block size. Code rate=1/3 and Log-MAP APP decoding algorithms are used in these examples.
Figure 5 demonstrates the first example showing the performance increasing with interleaver span. The block size is 100 bits. Interleaver span 1, 2, 3, 4, 5 and 6 are applied. Maximum iteration number is 15. IBPTC-TB is used and tail-bits power consumption is reduced.
Consider the frame error rate (FER) =10-3, the span 1 requires SNR=1.2dB, the span 2 requires SNR=0.9dB, the span 4 requires SNR=0.5dB and the span 5 and 6 require SNR=0.4dB. The performance increases with the span significantly except for the span 3. The span 6 outperforms the span 5 slightly because the interleaving depths are similar. If we consider bit error rate (BER), we have the same conclusions.
The span 3 case has been predicted in [1] and is easy to be prevented. One can design a non-periodic IBP algorithm to get rid of this case but it loses in regularity and simplicity. In fact, the span 2 possesses quiet impressive performance and omitting the span 3 is only a minor expense.
[image: image5.jpg]
Fig. 5: Interleaver span influences for block size 100 bits.

This example demonstrates the performance over the same interleaving latency. Increasing the span enlarges interleaving latency and buffer size. Therefore similar cost cases are compared. Figures 6 and 7 demonstrate BER and FER performance. The interleaving latency is 1320 bits. The block size and interleaver span pairs are (660 bits, S=1), (440 bits, S=2) and (330 bits, S=3). IBPTC-TP and IBPTC-TB are both used in this example.

The span 2 outperforms the span 1 after SNR=0.4 dB. The error floor slope in the span 2 is much steeper than that in the span 1. [1] has shown the larger span has better minimum distance properties except for the span 3. Therefore the span 3 performs the worst and it is the same as the previous example. The larger span with the same interleaving latency provides better performance.
Figure 8 shows an impressive result for median block size with large interleaver span. The block size is 400 bits. The performance still increases with interleaver span except for the span 3. The span 2 achieves FER=10-3 at SNR=0.2dB, the span 5 achieves FER=10-3 at SNR=0.1dB, and the span 10 achieves FER=10-3 at SNR=0.0dB. The performance is close to the limit of the 3GPP defined turbo codes for the span 5 and 10. The performance is attractive.

If we are eager for the performance, IBPTC can support but we do not recommend. Outstanding performance for both turbo codes and LDPC codes comes from lengthy decoding and huge power consumption. Commercial applications do not prefer and computation power may be larger than the emitting power. The outstanding performance cost is too high to implement. Therefore this result only demonstrates that IBPTC supports future weird performance requirement. We prefer the span 2 as our favourite candidate.
[image: image6.jpg]
Fig. 6: Bit error rate comparison of various interleaver spans.

 [image: image7.jpg]
Fig. 7: Frame error rate comparison of various interleaver spans.

[image: image8.jpg]
Fig. 8: Interleaver span influences of block size 400 bits.
4.1.2 Schedule and memory influence
Figures 9-11 show BER, FER and average iteration number. The dynamic decoder is considered and IBPTC-TB is used. Block size is 400 bits. Maximum iteration number is 25. We count memory by memory unit (MU) which stores L soft bits. For example: code rate 1/3 turbo code with block size L bits requires 3MUs storing received samples. Note that turbo code with block length 3200 bits and code rate 1/3 requires at least 40 MUs to decode.
Schedule influences performance. Schedule A is a new schedule and schedule B is the schedule with the same performance to the pipeline decoder. Figure 9 shows that Schedule A applying 45MUs has similar performance to schedule B applying 80 MUs. Figure 10 shows that Schedule A applying 40MUs has similar performance to schedule B applying 80 MUs. Schedule A can save more than 40-50% memory usage. However Figure 11 show that Schedule A applying 45 MUs requires 2-4 more iterations. The performance comes from extra computation but less than 6 average iterations after SNR=0.7dB. One can design schedule to achieve different purposes and another schedule example will be demonstrated for DVB-RCS defined turbo code.
Limiting memory for the dynamic decoder reduces computation at low SNR. Schedule B requires less than 10 average iterations at 0.0 dB and average iterations decreases with SNR. However, block turbo decoder can not take advantages on this feature and waste computation power at low SNR situation for incorrect data. In some sense, the dynamic decoder has the intelligence to recognize environments in saving unnecessary computation. Maximum iteration number can be set any large value to improve performance if there is no strict constraint on decoding latency.
[image: image9.jpg]
Fig. 9: Bit error rate comparison of various schedules.

[image: image10.jpg]
Fig. 10: Frame error rate comparison of various schedules.

[image: image11.jpg]
Fig. 11: Average iteration number comparison of various schedules.
4.1.3 Code rate = 1/3
Figures 12-15 show bit error rate (BER) and frame error rate (FER) performance for code rate = 1/3 IBPTC. Figures 12 and 13 demonstrate performance improvement to conventional turbo codes. Figures 14 and 15 compare performance with conventional turbo codes of various block lengths. Maximum iteration number used in both cases is 10.
Both Figures 12 and 13 consider the same block size and interleaving latency. For the block size L=400 bits, the performance is improved by 1.0 dB and 0.8 dB at BER=10-5 and FER=10-3, respectively. As for the same interleaving latency 800 bits, the performance is improved by Eb/N0=0.5 dB and Eb/N0=0.4 dB at BER=10-5 and FER=10-3, respectively.
Figures 14 and 15 compare the performance between the IBPTC and the conventional turbo codes with different block sizes. The block size L=400 and 265 bits are considered with the interleaver span S=1 and 2 for the IBPTC. Both cases possess interleaving latency 800 and 795 bits. As shown in the figures, the performance for the IBPTC is similar to that for the conventional turbo codes with L=2800 bits.
[image: image12.jpg]
Fig. 12: Bit error rate performance for the same block size and interleaving latency.

[image: image13.jpg]
Fig. 13: Frame error rate performance for the same block size and interleaving latency.

[image: image14.jpg]
Fig. 14: Bit error rate comparison with turbo code of various block lengths.

[image: image15.jpg]
Fig. 15: Frame error rate comparison with turbo code of various block lengths.
4.1.4 Various code rate, modulation comparison and puncture pattern

This part extensively evaluates the performance over different code rates and modulation schemes. IBPTC-TB is used. Block size is 400 bits. Maximum iteration number is 25. BPSK/QPSK, 16QAM and 64QAM are candidate modulations. Gray mapping is used to convert bits into symbols. MAP rule for 16QAM/64QAM to bit reliability conversion. Code rate=1/2, 2/3, 3/4 are considered. These combinations provide totally 11 kinds of data rates: 0.5, 0.67, 0.75, 1.0, 1.33, 1.5, 2.0, 2.67, 3.0, 4.0 and 4.5 bits/HZ.

Puncturing pattern influences performance. Two kinds of puncturing patterns are used. The first kind is standard puncture pattern. The pattern punctures parity bits only. The second kind is the new puncture pattern. The new pattern punctures both parity bits and data bits and provides better performance at high SNR region. Especially for code rate=3/4, the new pattern possesses very sharp error rate curves. This breaks a myth that turbo code performs badly at high code rate.

AWGN and flat Rayleigh fading channels are target environments. Flat Rayleigh fading channel is a reasonable assumption. OFDM modulation and rich multi-path effect induce severe amplitude variation. A channel interleaver spreads channel effect over all blocks. Therefore, influence is similar to flat Rayleigh fading channel. If the channel effect is not rich, channel variation is not severe and the equivalent effect will be similar to AWGN channel. In the following, we firstly compare performance over AWGN and then compare that over flat Rayleigh fading channels.
4.1.4.1 AWGN Channel

This part evaluates FER over AWGN channel. Figure 16 compares FER of various code rate and modulation combinations. These curves provide performance evaluation data base. Detail performance comparison with 3GPP defined turbo codes are shown in Figure 17-25.
Figure 16 compares puncturing pattern effect of various code rates and modulation schemes. Schedule A is applied in this figure. New puncture patterns provides excellent performance at higher SNR/lower FER regions but loses at lower SNR/higher FER regions. When code rate=3/4, the new pattern outperforms the standard pattern by 1-1.5dB at FER=10-4 but loses by 0.1-0.4 at FER=10-2. When code rate=1/2, the new has similar performance to the standard and outperforms in error floor slightly. When code rate=2/3, the new loses the standard. Puncturing pattern affects turbo code performance significantly. Similar results are also shown in the flat Rayleigh fading channel environment.

Figures 17-25 provide FER of each specific code rate and modulation combination. 3GPP defined turbo code performance is also plotted as reference curves in this curves. Performance of Schedule B is also provided. Detail comparison between FER, computation and 3GPP defined turbo codes are attainable at a time.
Our code has similar FER to the turbo code with block length 3200 bits of various combinations. Our code indeed possesses excellent performance under interleaver span=1 which is the worst case of our code.

[image: image16.jpg]
Fig. 16: Various modulation and code rate simulation results over AWGN channel.

4.1.4.1.1 BPSK/QPSK Code=1/2

[image: image17.jpg]
Fig. 17: Frame error rate of code rate 1/2 and BPSK/QPSK modulation.

4.1.4.1.2 BPSK/QPSK Code=2/3
[image: image18.jpg]
Fig: 18. Frame error rate of code rate 2/3 and BPSK/QPSK modulation.
4.1.4.1.3 BPSK/QPSK Code=3/4
[image: image19.jpg]
Fig. 19: Frame error rate of code rate 3/4 and BPSK/QPSK modulation.
4.1.4.1.4 16QAM Code=1/2

[image: image20.jpg]
Fig. 20: Frame error rate of code rate 1/2 and 16QAM modulation.
4.1.4.1.5 16QAM Code=2/3
[image: image21.jpg]
Fig. 21: Frame error rate of code rate 2/3 and 16QAM modulation.
4.1.4.1.6 16QAM Code=3/4
[image: image22.jpg]
Fig. 22: Frame error rate of code rate 3/4 and 16QAM modulation.
4.1.4.1.7 64QAM Code=1/2

[image: image23.jpg]
Fig. 23: Frame error rate of code rate 1/2 and 64QAM modulation.
4.1.4.1.8 64QAM Code=2/3
[image: image24.jpg]
Fig. 24: Frame error rate of code rate 2/3 and 64QAM modulation.
4.1.4.1.9 64QAM Code=3/4
[image: image25.jpg]
Fig. 25: Frame error rate of code rate 3/4 and 64QAM modulation.
4.1.4.2 Flat Rayleigh Fading Channel
This part evaluates FER over flat Rayleigh fading channel. Figure 26 compares FER of various code rate and modulation combinations. Flat Rayleigh fading channel data base is provided. Figures 27-35 detail performance comparison with 3GPP defined turbo codes.
Figure 26 compares puncture pattern effect of various code rates and modulation schemes. Schedule A is applied in this figure. New puncture patterns provides excellent performance at higher SNR/lower FER regions but loses at lower SNR/higher FER regions. When code rate=3/4, the new pattern outperforms the standard pattern by 2-3dB at FER=10-4 but loses by 0.1-0.4 at FER=10-2. When code rate=1/2, the new has similar performance to the standard and outperforms in error floor slightly. When code rate=2/3, the new minorly loses the standard at lower SNR but outperforms at higher SNR. Puncture pattern still affects turbo code performance and provides better performance gain. The gain comes from larger free distance which provides diversity gain over fading channel. The pattern improves annoying fading effects.
Figures 27-35 provide FER of each specific code rate and modulation combination. 3GPP defined turbo code performance is also plotted as reference curves in this curves. Performance of Schedule B is also provided. Detail comparison between FER, computation and 3GPP defined turbo codes are attainable at a time.

Our code has similar FER to the turbo code with block length 3200 bits of various combinations. This is similar conclusion as the previous AWGN environment. Our code indeed possesses excellent performance under interleaver span=1 which is the worst case of our code.
[image: image26.jpg]
Fig. 26: Various modulation and code rate simulation results over flat Rayleigh fading channel.
4.1.4.2.1 BPSK/QPSK Code=1/2

[image: image27.jpg]
Fig. 27: Frame error rate of code rate 1/2 and BPSK/QPSK modulation.
4.1.4.2.2 BPSK/QPSK Code=2/3

[image: image28.jpg]
Fig. 28: Frame error rate of code rate 2/3 and BPSK/QPSK modulation.
4.1.4.2.3 BPSK/QPSK Code=3/4
[image: image29.jpg]
Fig. 29: Frame error rate of code rate 3/4 and BPSK/QPSK modulation.
4.1.4.2.4 16QAM Code=1/2

[image: image30.jpg]
Fig. 30: Frame error rate of code rate 1/2 and 16QAM modulation.
4.1.4.2.5 16QAM Code=2/3
[image: image31.jpg]
Fig. 31: Frame error rate of code rate 2/3 and 16QAM modulation.
4.1.4.2.6 16QAM Code=3/4
[image: image32.jpg]
Fig. 32: Frame error rate of code rate 3/4 and 16QAM modulation.
4.1.4.2.7 64QAM Code=1/2

[image: image33.jpg]
Fig. 33: Frame error rate of code rate 1/2 and 64QAM modulation.
4.1.4.2.8 64QAM Code=2/3

[image: image34.jpg]
Fig. 34: Frame error rate of code rate 2/3 and 64QAM modulation.
4.1.4.2.9 64QAM Code=3/4
[image: image35.jpg]
Fig. 35: Frame error rate of code rate 3/4 and 64QAM modulation.
4.2 DVB-RCS/RCT defined turbo code
Figures 36 and 37 compare the performance of the DTC [5,6] defined in DVB-RCS/RCT. Three schedules are applied for IBPDTC decoding. Schedule C is a specific schedule for low SNR region. IBPDTC applies 53 Bytes as block size. DTC applies both 53 and 106 Bytes. Due to DTC symbol based interleaver, IBP algorithm is performed over both symbol and bit levels. IBPDTC decoder applies Log-MAP algorithm but DTC decoder applies both Log-MAP and MAX Log-MAP algorithms.
The IBPDTC applying bit level IBP has the best performance. The bit level outperforms the symbol level IBP. The error floor performance is also much improved. Comparing with DTC, the IBPDTC decoder applying schedule A and B outperforms the DTC with block size 53 and 106 Bytes by 1-1.2 dB at FER=10-4-10-5. Besides, bit level APP decoding requires less memory storage compares with symbol level APP decoding. The bit level IBP is the best choice.
Schedule effect is evaluated in these figures. Schedule A outperforms schedule B at lower SNR region but loses at higher SNR region. Schedule C performs best at lower SNR region but loses in the error floor shape. If we are eager to the performance at lower SNR region, Schedule C can be considered.
Decoding algorithm influences the performance severely for IBPDTC applying bit level IBP. For DTC, we additionally apply Max Log-MAP algorithm to decode. [5] demonstrates DTC possesses low computation advantage. Both figures prove this fact. When we apply Log-MAP algorithm to the symbol level IBPDTC, we have similar results but performance gap is slightly larger. When we apply Log-MAP algorithm, the bit level IBPDTC performs much better. Although DTC possess better performance due to interleaver design, symbol level message passing decreases error rate performance at lower SNR. Log-MAP algorithm can only provide correlated information to process iterative decoding. The bit level IBPDTC is a good code and the bit level IBP improves DTC defect in performance.
[image: image36.jpg]
Fig. 36. Bit error rate performance of the DTC.

[image: image37.jpg]
Fig. 37. Frame error rate performance of the DTC.
5 Future Compatibility
IBPTC and the dynamic decoder suit software defined radio (SDR) and DSP based architecture. IBPI is constructed by a fixed short length interleaver and the multiple interleavers are inter-connected by an IBP algorithm. Interleaver span is the only parameter for the IBP algorithm and determines the performance. These IBPI features support simplicity, regularity, flexibility, calculability and programmability. The decoder is composed of modules. A control unit determines decoding procedure by an embedded schedule. The schedule is also reprogrammable. Therefore the structural code suits for software based architecture.

IBPTC supports future error rate and throughput requirement. The decoder also adapts to hardware implementation technology. The performance increases with interleaver span by paying computation. Increasing APP decoder number provides high throughput and IBP algorithm prevents memory access collision. As the APP decoder is more efficient by time, the hardware cost is reduced by decreasing APP decoder number without performance loss. IBPTC adapts to hardware technology evolution.

6 Conclusions
We provide a backward compatible high speed turbo code solution for long length data streams, where data length can be as long as infinity. Moreover, the code structure of the IBPTC suits for parallel processing, i.e. it is capable of high throughput performance. Various popular turbo codes applied in 3GPP/3GPP2/DVB-RCS/DVB-RCT can used IBP concept to improve throughput without performance degradation.
The decoder is flexible. The complexity depends on memory size, number of APP decoders and number of interleavers. Throughput demands decide complexity. Any throughput is attainable by simply increasing the number of APP decoders. A good schedule design reduces decoding latency and required memory storage. The decoder suits various demands.
Future compatibility is also attainable. IBPI is simply reconfigurable and therefore IBPTC performance can be better to suit future performance requirement. Decoder is flexible and configurable. Schedule is programmable, APP decoder number is adjustable. IBPTC suits future applications especially for software defined radio and cognitive radio.
We provide precise and complete simulation results to evaluate IBPTC performance. Various performance results are shown and some of them are attractive. Performance comparisons with the 3GPP turbo codes are provided. Puncture pattern effect is also demonstrated. New puncture pattern performance for turbo code is disclosed. AWGN and flat Rayleigh fading channels are both considered. We can simply make a decision based on these results.
IBPTC supports backward compatibility, nowadays throughput requirements and future system adaptation.
7 Reference
[1] Y.-X. Zheng, Y. T. Su, “On inter-block permutation and turbo codes," in Proc. international Symp. Turbo Codes and Related Topics, Brest, France, Sep. 2003.
[2] Y.-X. Zheng, Y. T. Su, “Iterative decoding algorithm and terminating criteria for inter-block permuted turbo codes,” in Proc. Personal, Indoor and Mobile Radio Communications, Vol. 2, pp. 1116-1120, 5-8 Sept. 2004.
[3] Y.-X. Zheng, Y. T. Su, “High throughput turbo coding system”. Wireless World Research Forum Meeting 14, San Diego, California, 7-8 Jul. 2005.
[4] TS 25.222 V3.1.1 multiplexing and channel coding (TDD), 3GPP TSG RAN WG1, Dec. 1999
[5] C. Berrou, M. Jézéquel, C. Douillard, S. Kerouedan, “The advantages of non-binary turbo codes,” in Proc. ITW2001, Sep. 2001.

[6] DVB, “Interaction channel for satellite distribution systems," ETSI EN 301 790, V1.2.2, pp.21-24, Dec. 2000.

PAGE
28

