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1 Introduction

This work presents a link to system level mapping scheme that allows a system level simulator to predict the probability of block error (BLER) for each transmission of a data block. Many of the methods utilized herein have in one form or another been presented in previous works dealing with single antenna systems [1]

 REF _Ref112583413 \r \h 
[2]

 REF _Ref112583416 \r \h 
[3]

 REF _Ref112583418 \r \h 
[4]. This document however offers a detailed description of how to combine and sometimes modify these methods and also provides some preliminary results on the accuracy of the resulting BLER prediction for MIMO systems. The present document may therefore be viewed as a basis for further discussion on how to obtain appropriate link to system level mappings. 

2 Generic Problem Formulation

It is well-known that for complexity reasons, simulating each individual link in system simulations is not feasible and the BLER thus instead needs to be quickly predicted based on some lookup tables as a function of the performance affecting parameters. Some of these parameters are fixed during the course of a simulation while others are dynamically varying from one TTI to another. The latter type is in here referred to as short term parameters and examples of such include the channel realizations during the transmission and the spatial and temporal correlation properties of interfering signals. 

Let the vector 
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 describe all parameters that affect the short term BLER we want to predict. Thus, the BLER is a function of 
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Due to the typically large number of parameters and the complexity of the problem, the BLER function is in general not known analytically. A feasible approach is instead to attempt to estimate the BLER function based on training data obtained from link level simulations. Thus, we want to find a function 
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. In principle, this estimation problem can be formulated as the minimization problem
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where 
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is a function measuring the error between its two function arguments and the search is conducted over some set 
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of candidate approximate BLER functions. To solve (2) in practice, a link level simulator that takes into account all performance affecting parameters is run with fixed parameter values
[image: image9.wmf]s

θ

θ

=

, yielding a corresponding
[image: image10.wmf]s

BLER

. The process is repeated for 
[image: image11.wmf]S

s

,

,

2

,

1

L

=

 and the resulting 
[image: image12.wmf](

)

s

s

BLER

,

θ

-tuples, also known as scatter points, is then used as training data for fitting an approximate BLER curve taken from a set 
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 is a vector with so-called fudge factors, i.e., parameters that can be used to modify the shape of the approximate BLER curve so as to better agree with the true BLER function. The minimization problem in (2) then turns into the curve fitting problem
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where 
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 now measures the total error between the training data and the approximate BLER curve. After solving (3), the system level simulator can thus predict the BLER as
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3 An Effective SNR Based BLER Prediction Approach

Before solving the curve fitting problem in (3), it remains to determine a suitable function to be used for approximating the true BLER curve and also to decide on how to perform the parameterization in terms of the fudge factors in
[image: image18.wmf]μ

. The large number of parameters which typically affect the performance is still a problem, making it difficult to find a function which directly takes all parameters in 
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 into account. To circumvent this, there is a need to first compress the usually high dimensional parameter vector into a new vector with fewer parameters. The challenge is to find such a compressed parameter vector which yet contains sufficient performance related information so that it can be used to accurately predict the BLER. 

Similarly to many other single antenna contributions [1]

 REF _Ref112583413 \r \h 
[2]

 REF _Ref112583416 \r \h 
[3]

 REF _Ref112583418 \r \h 
[4], this work performs the parameter compression by first transforming all performance affecting parameters, including channel realizations and realizations of spatial correlation properties, into symbol SNR values. As illustrated in the HSDPA MIMO system structure depicted in Figure 1, these symbol SNR values are computed at the input of the soft demodulator and then play the role of the new parameter vector. Similarly to as in [3], the effects of channel estimation errors are assumed to be taken into account in the symbol SNR computation. It is also assumed that some form of equalization has been performed so that the input of the soft demodulator can be accurately modeled as a set of parallel AWGN channels with varying SNR values. For simplicity, these AWGN channels are taken to be statistically independent so that the soft demodulator may treat each received symbol stream separately from all the other streams.

[image: image20]Figure 1: An overview of the system model.
For the present MIMO case, it should be clear that the coded bits belonging to a certain HARQ process may see many different symbol SNR values in a single transmission even if the channel, as well as the interference levels, is constant for the entire transmission of a data block. This is in contrast to the corresponding single antenna scenario in which only a single SNR is enough for characterizing the performance. 
To develop the BLER prediction scheme, start by associating with each coded bit the symbol SNR of the AWGN channel that the bit has passed through. Let 
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 denote the SNR for the 
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th coded bit in the sequence of coded bits that were transmitted in the 
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th transmission attempt. Collect all the coded bit SNR values for the 
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th transmission in the vector
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 should give an accurate prediction of the BLER for the 
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th transmission attempt for the HARQ process under study.
In order to obtain good candidate functions for the BLER curve fitting, we adopt the common strategy of computing an effective SNR [5] based on the symbol SNR values. This effective SNR is then used to look up the BLER value from a reference curve that gives the BLER as a function of the symbol SNR for a (possibly punctured) turbo code transmitted over an AWGN channel with fixed symbol SNR. Retransmissions are handled by having a buffer containing the symbol SNR values for each coded bit. Before the first transmission attempt, all buffer elements are set to zero. For each new transmission attempt, the current symbol SNR values are added to the SNR buffer in the same manner as the corresponding soft bit values would be added to the soft bit HARQ buffer. In other words, the SNR values are passed through de-interleaving, de-rate matching etc.

The reference curve for the 
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th transmission attempt is selected to correspond to the effective code rate after 
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 transmissions and using the same modulation as in the first transmission attempt of the transmission whose performance we want to predict. Let the function
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of the SNR 
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 represent the reference curve used for the 
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th transmission attempt assuming a signal constellation of 
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Selecting the modulation format of the reference curve as explained above ensures that the modelling at least complies with the important first transmission attempt if the signal constellation would vary from one transmission attempt to another. For the remaining transmission attempts, we propose to approximately model the effects of switching signal constellation by using an SNR fudge factor 
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to scale the symbol SNR values for the 
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th transmission attempt before they are added to the SNR buffer. Here, 
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denotes the signal constellation (QPSK or 16-QAM) used during the 
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th transmission attempt. For example, if the first transmission is QPSK and the second is 16-QAM, the relevant weighting factor should be roughly
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, i.e., the 16-QAM SNR values are scaled down a factor of four in order to account for the smaller minimum distance in the 16-QAM constellation. Ultimately, the SNR fudge factor will be determined based on link level simulation data.
To see more exactly how the values in the  SNR buffer are obtained, let 
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 denote the SNR value for the 
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th coded bit in the SNR buffer after the 
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th transmission attempt and collect all the 
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 SNR values in the buffer into the vector 
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 which gives the index into the SNR buffer at which the 
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th coded bit SNR should be added. The SNR buffer is thus updated according to
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Based on the accumulated SNR values in the buffer, an effective SNR needs to be computed. It is realized that an effective SNR measure should have the following characteristics:

1. If all the SNR values in the buffer are equal then the effective SNR should equal this constant value.
2. The higher the code rate, the more the effective SNR should be biased toward the low SNR values in the buffer, since low SNR values then heavily influence the performance. High SNR values should thus in general be penalized and the amount of penalization depends on the code rate.

3. For low rate codes the penalization for high SNR values should be smaller. In the extreme case of repetition coding, high and low SNR values are equally important and the linear average determines the performance.

Several ways of mimicking the above properties have been proposed in the literature [3][4]. In these works, the desired penalization of high SNR values is obtained by transforming each non-zero SNR value through a non-linear function 
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, averaging over all the resulting transformed values producing the average value
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, and finally going back to the SNR domain by solving for the single SNR value that would produce a transformed value of 
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. To allow the effective SNR mapping to be tailored for each specific MCS, all the SNR values in the buffer are scaled by a fudge factor
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 is also introduced in order to shift the effective SNR (in dB). Thus, the effective SNR 
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where
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is the set of SNR indices 
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 for which 
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 denotes the number of elements in that set. Note that we emphasize that the effective SNR depends on the fudge factors by making the effective SNR a function of the latter. 

In this document we similarly to as in [3] take the non-linear function 
[image: image59.wmf])

(

1

×

c

g

 to be based on the capacity of bit-interleaved coded modulation (BICM) over an AWGN channel [6]. To see what this means, let 
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denote the set of signal constellation points for a certain modulation format 
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. It is now possible to write the formula for BICM capacity as
    
[image: image65.wmf]å

å

å

=

Î

Î

ï

þ

ï

ý

ü

ï

î

ï

í

ì

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

-

-

-

-

=

M

m

X

x

X

x

c

b

m

c

c

x

y

x

y

M

g

1

2

2

2

y

b,

)

,

(

1

1

1

)

)

(

exp(

)

)

(

exp(

log

E

)

(

r

r

r


(7)

where 
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 is the output of an AWGN channel with SNR 
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 and where it is assumed that the constellation points are normalized such that
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. The function in (7) can be evaluated by means of Monte-Carlo integration. The resulting curves for QPSK and 16-QAM modulation are depicted in Figure 2. 
To utilize (7) in practice, easily invertible analytic approximations are useful. Examples of such for QPSK and 16-QAM are
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where the coefficients are given by
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Figure 2: Analytic and Monte-Carlo integrated BICM capacity curves.

It can now be understood how the 
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 factor will affect the computation of the effective SNR. For a sufficiently small  
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 factor, all SNR values will be averaged together in the linear region of the capacity curve. Hence, the effective SNR is basically obtained as a scaled linear average of the original symbol SNR values. On the other hand, when the 
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 factor is increased, the operating point on the capacity curve moves closer to the saturation region, meaning that high SNR values will be penalized more than lower ones, since the latter are located at a steeper part of the curve than the former ones. 
It is interesting to note that (7) is the channel capacity of a system which performs outer coding followed by random interleaving of the coded bits and subsequent transmission over an AWGN channel with an SNR of 
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 using the specified signal constellation. Consequently, the average 
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of the transformed SNR values is then the capacity of an AWGN channel with time-varying and periodic SNR that during one period takes on values from an ordered sequence of the elements in
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 can be viewed as the capacity of an AWGN channel whose SNR varies according to a stationary and  ergodic random process with a marginal SNR probability mass function (PMF) given by the sample distribution of 
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Combining (4) and (6) shows that the approximate BLER function in (3) can be written on the form  
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where the fudge factors in
[image: image84.wmf]μ

 are now
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By solving (11), appropriate fudge factors can be obtained for each MCS whose performance needs to be predicted. Although the above indicates a possibly computationally complex joint search over all fudge factors, some of the fudge factors may in practice be more or less independent of each other and may thus be determined separately from the others. Even if independence does not strictly hold, similar such strategies may still be used to get approximate solutions.
4 Simplifications and Modifications
The effective SNR based BLER prediction approach in the previous section relieves the system simulator from performing turbo encoding/decoding. As such it should lead to a substantial reduction in computational complexity relative to full simulation of the individual links. Depending of the desired level of accuracy, tolerated level of computational complexity, and also the amount of available training data, it may be worthwhile to explore simplifications of some parts of the BLER prediction approach. Since we have not yet fully verified that sufficient prediction accuracy is reached, it can also turn out that further modifications are needed. What has been described so far may therefore alternatively be viewed as a baseline case from which related and/or simpler methods are derived. Some suggestions for modifications that can be investigated further are listed below:
1. Simplifying by assuming chase combining: Since the same coded bits are then repeatedly transmitted, the re-ordering function in (5) is not necessary and the de-interleaving and de-rate matching can thus be omitted. This also means that the effective code rate now stays the same so that the same reference curve can be used for all transmission attempts.

2. Simplifying by assuming that the coded bits in successive transmission attempts do not overlap until an effective code rate of 1/3 is reached: Also in this case can the de-rate matching step be removed. As long as the coded symbols do not overlap, no SNR adding is performed and the effective SNR is formed based on all the original SNR values. The effective rate is continuously updated and used to select the reference curve until a rate of 1/3 (in case of HSDPA) is reached. When this happens, the remaining SNR values and the SNR values in succeeding transmission attempts are added to the existing SNR values. This is of course only a rough approximation of the de-rate matching process. It needs to be further investigated whether the resulting prediction accuracy is sufficient.

3. Refining the modelling by taking the position of each coded bit in the transmitted symbols into account: The BICM capacity expression in (7) computes the capacity for a channel with all bits in the constellation as input. Thus, when performing the effective SNR transformation, all bits belonging to the same symbol are treated in the same average, manner. In reality, some bit positions in a symbol can be more vulnerable to errors than others. This can be taken into account by for each coded bit keeping track of the bit position 
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and instead using the BICM capacity expression for a particular bit [6]
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as the new SNR transformation function.
5 Preliminary Simulation Results

This section presents some preliminary results on how well the BLER can be predicted for an HSDPA MIMO system performing the single code word (SCW) mode without spatial multiplexing or feedback, as described in [8]. Optimized fudge factors based on training data obtained from link level simulations are presented and used for producing scatter plots that illustrate the prediction capabilities. Results are preliminary and are shown for just a few illustrative MCS configurations. In particular, this first initial study is limited to low-mobility scenarios with only one transmission attempt for each data block and with ideal channel knowledge at the receiver.
The assumption of a low-mobility scenario means that we consider the channel and the interference statistics to be constant during a TTI. The short term portion of the parameter vector 
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 then consists of the channel matrix and the spatial interference covariance matrix. Training data is acquired by generating several realizations of these short term parameters and then, in turn, repeatedly let the link level simulator determine the BLER corresponding to each realization of 
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 (i.e., each realization of the channel and interference covariance matrices). This is accomplished by keeping the parameter vector fixed for the entire duration of each simulation run. A short term SNR value for every symbol that is input to the soft demodulator was computed and thereafter logged for off-line processing according to the described BLER prediction approach. After determining suitable fudge factors for each MCS under study by using a simple grid search method to solve (11), the effective SNR values were computed, resulting in
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different scatter points
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Suitable channel and spatial interference covariance matrices were generated by assuming the urban macro scenario in the MIMO channel model described in [7]. To ensure sufficient variation of the spatial characteristics, each channel and interference realization was obtained by making a new “drop” in the channel model. The resulting matrices were then scaled so as to end up in the SNR range of interest.
For generating reference curves, the BLER curves presented in Section A.4.5 of [2] were used as a basis. To also accommodate very high coding rates, an additional AWGN curve with a coding rate of 0.97 was included. The relevant values are given in Table 1. Linear interpolation was used to get BLERs for SNR values between the sample points of these basis curves. The actual reference curve for a particular effective coding rate 
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 was obtained by linear interpolation of the given AWGN curves in the SNR domain using the effective coding rate 
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 as interpolation factor.

Table 1:  Additional 16-QAM AWGN curve having a coding rate of 0.97. 

	SNR [dB]
	14.5000
	15.0000
	15.1250
	15.1875
	15.2500
	15.3125
	15.3750
	15.5000
	15.6250

	BLER
	1.0000
	0.8850
	0.8065
	0.6623
	0.4854
	0.4587
	0.2976
	0.2004
	0.1299

	SNR [dB]
	15.6875
	15.7500
	15.8125
	15.8750
	16.0000
	16.1250
	16.2500
	16.3750
	-

	BLER
	0.0863
	0.0794
	0.0756
	0.0461
	0.0369
	0.0245
	0.0167
	0.0130
	-


An SCW MIMO system with two transmit and two receive antennas was considered. In all cases was the
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 for the HS-PDSCHs set to 75%. The receiver was equipped with a linear MMSE space-time equalizer. Five different MCSs were defined in order to serve as illustrative examples when investigating the BLER prediction problem. These MCSs are given in Table 2. As seen, the MCSs span a wide range of coding rates for the first transmission attempt and should hence cover even the most extreme cases.

Table 2: Example MCSs.

	MCS
	Nr. Info Bits 

(excluding CRC)
	Nr. Channelization Codes
	Signal Constellation
	Nr. Coded Bits/TTI
	Effective Coding Rate
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	1
	137
	1
	QPSK
	1920
	0.3253

	2
	7168
	8
	QPSK
	15360
	0.4682

	3
	17237
	12
	16-QAM
	46080
	0.3741

	4
	50194
	15
	16-QAM
	57600
	0.8714

	5
	52703
	15
	16-QAM
	57600
	0.9150


Optimizing the fudge factors for the given set of MCS produces the values presented in Table 3. It can be observed that the 
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 factor increases with increasing coding rate. This agrees well with the conjectures in Section 3 that the penalization of high SNR values should increase with increasing SNR. For MCS 1, the
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 factor is far below one so the effective SNR computation starts to resemble linear averaging of SNR values. A measure 
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of the prediction error is also included as the last column in the table. This measures the average squared difference in dB between the effective SNR of each scatter point and the effective SNR predicted by the reference curve for a BLER equal to the BLER of the corresponding scatter point. The error measure is thus given by
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(13)

It is seen that the errors for MCS 2 and 3 are significantly smaller than for the other MCS configurations. This is also evident from Figure 3 which illustrates the level of accuracy in predicting the BLER by plotting the scatter points on top of the corresponding AWGN reference curve. The scatter points and the reference curves for MCS 2 and 3 are indeed closely aligned. The BICM capacity curves thus succeed in modeling the behavior of the BLER as a function of SNR. From Table 3 it is clear that both these MCSs have a low coding rate and not too short block length. They should thus be close in performance to capacity achieving codes and it should therefore not come as a surprise that a capacity based SNR transformation function predicts these cases well. On the other hand, the prediction for the other MCSs seems to be significantly worse.  How close the codes operate to capacity achieving codes may again offer an explanation. For MCS 1, the short data block length of the code makes it far from capacity achieving while for MCS 4 and 5, the high coding rate reduces the effectiveness relative to capacity achieving codes. For these two latter MCSs, the degraded prediction ability may also partly be due to some simulator specific approximations performed in the symbol SNR calculations. These approximations only come into play at the high geometries needed to obtain such high effect SNR values. 
Overall, the prediction accuracy for the selected MCS configuration is still quite good, given that the prediction will be used in a highly dynamic system level simulation with large SNR variations.

Table 3: Values of optimized fudge factors and resulting error for some MCSs.

	MCS
	
[image: image106.wmf]i


	
[image: image107.wmf])

(

i

Q


	
[image: image108.wmf]r

D

[dB]
	
[image: image109.wmf]Err

-

SNR

s

[dB]

	1
	1
	0.6
	-0.8
	0.27

	2
	1
	1.4
	0.1
	0.087

	3
	1
	2.0
	-0.1
	0.065

	4
	1
	8.0
	-1.4
	0.15

	5
	1
	8.0
	-0.2
	0.21
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Figure 3: Plot of scatter points and corresponding approximate BLER curves as a function of effective SNR. The curves are in order of MCS number, starting with MCS 1 at the left.                                                                            
6 Conclusions

This document described a method for predicting the BLER in MIMO HSDPA systems. Effective SNR formed from BICM capacity functions together with lookup in AWGN reference curves constitutes the basis of the approach. Preliminary results for a single transmission attempt show that MCSs with moderate coding rates and sufficiently long data block lengths are easily predicted with high accuracy. Extreme coding rates and/or very small block lengths present more of a challenge. Acceptable prediction quality is however still obtained. 
Further verification of the presented method’s validity in scenarios with several transmission attempts and channel estimation errors are needed. Since the present prediction method views the input to the demodulator as the output of statistically independent AWGN channels, it may also be important to investigate how correlations between the noise samples of the AWGN channels affect the prediction of the performance.
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