TSG-RAN WG1 #35
R1-031303
Lisbon, Portugal, November 17-21, 2003

Source:
Ericsson

Title
System-level evaluation of OFDM – further considerations

Agenda Item:
10.1

Document for:
Discussion

1. Introduction

In [1] the basic methodology to evaluate the system-level performance of different air-interface technologies in general, and OFDM in particular, was discussed. It was concluded that a critical component needed for an accurate system-level evaluation was the availability of an Effective SIR Mapping (ESM). The ESM maps the instantaneous channel state into a single scalar value, an effective SIR, which then is used to find an estimate of the Block-Error probability (BLEP) for this specific channel state. In this paper, the ESM is discussed in more detail and an exponential ESM is derived. Initial link-level simulations seem to indicate that the exponential ESM may provide a relatively accurate tool for link-level modeling of e.g. OFDM, at least for the case of QPSK modulation. For 16QAM modulation, the exponential ESM in its current form seems to be somewhat less accurate. However, it could still be useful as an approximate, although typically optimistic, tool to model OFDM link-level performance.

2. Basic principles of an ESM

It was concluded in [1] that a key issue for accurate system-level evaluations is to be able to go from an instantaneous channel state, such as the instantaneous SNR for each sub-carrier in case of OFDM, to a corresponding block-error probability (BLEP). Instead of directly finding the block-error probability, it was proposed in [1] to use an Effective SIR Mapping (ESM) that maps the instantaneous channel state, e.g. the set of sub-carrier SNRs {(k } in case of OFDM, into an instantaneous effective SNR 
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 (a scalar value). The effective SNR is then used to find an estimate of the block-error probability from basic AWGN link-level-performance.

For an ESM to be accurate it obviously has to fulfill the following approximate equivalence:
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where
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 is the actual block-error probability for the instantaneous channel state 
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 is the AWGN block-error probability. It is important to understand that the above expression must be fulfilled for each instantaneous channel realization, or at least for almost all channel realizations, and not only e.g. “on average” for a given channel model.

3. The exponential ESM

In this section we first derive a basic exponential ESM for the case of binary signaling. The derived ESM is then generalized to include an MCS-dependent parameter that allows for fine-tuning of the ESM to different modulation schemes as well as different coding rates. Finally, the results of some initial link-level simulations are presented in order to provide a first indication of the accuracy of the exponential ESM.

3.1. Derivation of the basic exponential ESM

The exponential ESM is derived based on the Union-Chernoff bound of error probabilities. The union bound for coded binary transmission and maximum-likelihood decoding is well known and given by 
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where

· 
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 is the channel symbol SNR,

· 
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 is the minimum distance of the binary code,

· 
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 is the number of code words with hamming weight d, and

· 
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 is the pair-wise error probability (PEP) assuming a certain Hamming distance 
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 and a certain symbol SNR 
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For BPSK transmission over an AWGN channel and using Chernoff-bounding techniques, the PEP can be upper bounded according to 
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The last part of the above expression implies that the Chernoff-bounded PEP is directly given by the Chernoff-bounded (uncoded) symbol-error probability. Thus, the Chernoff-bounded error probability 
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only depends on the weight distribution of the code and the Chernoff-bounded symbol-error probability 
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The basic principles for the Union Chernoff bound for a multi-state channel, i.e. a channel where different coded bits are subject to different SNR, is explained with the simple example of a 2-state channel. The principles are then straightforwardly extended to the general multi-state channel.

The 2-state channel is characterized by an SNR vector 
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 where, in general, the two states 
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occur with probability 
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 respectively. Furthermore, the two SNR values are assumed to be independent from each other, which requires a corresponding interleaver in practice.

Let us now look at two arbitrary code words with Hamming distance d. The SNR value, either 
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 or 
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, associated with each of the d differing symbols depends on the respective symbol position. That means that the exact PEP for these two code words in case of a 2-state channel does not only depend on the distance d, but also on the position of the d differing symbols. Thus the union bound approach in the classical sense that all code-word pairs are compared would require detailed code knowledge about the bit positions. Instead, in this case the mean PEP, averaged over all possible positions of the d differing symbols, is used. This is equivalent to average over all possible cases how the SNR values 
[image: image24.wmf]1

g

 and 
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 may be distributed among the d differing symbols.  Hence, the Chernoff bounded PEP can be expressed as
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where the binomial theorem has been used to arrive at the final expression. To clarify the second expression, 
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 represents the probability that i of the d differing symbols are associated with SNR 
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 and the residual (d-i) symbols are associated with SNR 
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 such events and 
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 is the Chernoff-bounded PEP for such an event. 

It can be noted that the term 
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  is the averaged Chernoff-bounded symbol-error probability for the 2-state channel. Therefore, the simple relationship found for the 1-state channels is also valid for the 2-state channel, i.e. 
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Moreover, from the polynomial theorem, it can be shown that the same is true for the general multi-state channel, characterized by a vector 
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This feature of the Chernoff-bounded PEP is now exploited to derive the exponential ESM.

The goal is to find an effective SNR value 
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 of an equivalent 1-state channel such that the Chernoff-bounded error probability equals the Chernoff-bounded error probability on the multi-state channel, i.e.  


[image: image37.wmf](

)

(

)

g

g

Chernoff

e

eff

Chernoff

e

P

P

,

,

=


Due to the feature stated above, this can be achieved by matching the respective Chernoff-bounded symbol-error probabilities
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Inserting the Chernoff-bound expressions directly gives the exponential ESM:
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or, for the case of OFDM with N carriers and different SNR 
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on each carrier:
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3.2. A generalized exponential ESM

The above derivations have assumed binary transmission (BPSK). It is clear that, for QPSK modulation, the exponential ESM becomes
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For higher-order modulation, such as 16QAM, it is not as straightforward to determine the exact expression for the exponential ESM. The reason is that higher-order-order modulation in itself can be seen as a multi-state channel from a binary-symbol transmission point-of-view. Instead, we simply state a generalized exponential ESM including a parameter 
[image: image43.wmf]b

 that can be adjusted to match the ESM to a specific modulation scheme or, in the general case, a specific combination of modulation scheme and coding rate. A suitable value for the parameter 
[image: image44.wmf]b

 for each modulation scheme and/or coding rate of interest can then be found from link-level simulations.
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           The generalized exponential ESM
3.3. Evaluation of the exponential ESM

As an initial evaluation of the exponential ESM, link-level simulations have been carried out for two different modulations schemes (QPSK and 16QAM) and two different code rates for each modulation scheme (R=1/2 and R=2/3 for QPSK; R=2/3 and R=3/4 for 16QAM). For each transmission scheme, a number of channel realizations have been generated from both the Pedestrian A and the Pedestrian B channel model. For each channel realization, the SNR needed for a certain block-error probability (typically in the range 1% to 10%) have been found from simulations. In parallel, the exponential ESM has been used to find the SNR needed to get the same block-error probability, assuming the same channel realization. For the exponential ESM to be an accurate tool for link-level modeling, the difference between the simulated SNR and the SNR found from the ESM should be small for almost all channel realizations. 

3.3.1 QPSK modulation

Figure 1 and 2 illustrate the evaluation of the ESM accuracy for the case of QPSK modulation. Diamonds indicate the SNR used in the actual simulation while Crosses (() indicate the SNR calculated from the exponential ESM. Red and blue colors indicate realizations generated from the Pedestrian A and Pedestrian B channel models respectively.  For each code rate, the “best” value  (in a least-sum-of-square sense) for the parameter ( has been used.
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Figure 1 QPSK, R=1/2 ((=1.75 dB)
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Figure 2 QPSK, R=2/3 ((=2.25 dB)

The following can be noted:

· For the coding schemes illustrated in Figure 1 and 2, the value of the parameter ( of the generalized ESM is around 2 dB, i.e. somewhat smaller than the initially expected 3 dB (QPSK modulation, see above). Note that, a higher value of ( implies a more optimistic view on the OFDM link-level performance.

· In this case, the generalized exponential ESM provides quite an accurate estimate of the SNR required with an error that, in most cases, is within a few tenth of a dB. It should also be noted that, for the case when the error is larger, the ESM typically over estimates the performance.

3.3.2 16QAM modulation

Figure 3 and 4 illustrate the evaluation of the ESM for the case of 16QAM modulation. Once again, the parameter ( has been selected to give the best estimate of the SNR.

It can immediately be noticed that the exponential ESM does not provide an as accurate model of the link-level performance, as was the case for QPSK modulation (Figure 1 and 2). Especially, in several cases the exponential ESM noticeably under-estimates the link-level performance. 
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Figure 3 16QAM, R=2/3 ((=6.75 dB) [image: image49.emf]10.0
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Figure 4 16QAM, R=3/4 ((=7.5 dB)

As an alternative, Figure 5 and 6 illustrates the exponential ESM for 16QAM with somewhat higher value for the parameter ( ((=8 dB). In these cases, the ESM clearly provides an even less accurate model for the link-level performance. However, in this case, the ESM mainly over-estimates the link-level performance. This indicates that using the exponential ESM with (=8 dB could provide an optimistic model for the link-level performance of OFDM and 16QAM modulation.

[image: image50.emf]9.0

10.0

11.0

12.0

13.0

14.0

15.0

16.0

17.0

18.0

1 3 5 7 9 11 13 15 17 19

Realization

SNR [dB]


Figure 4 16QAM, R=2/3 ((=8 dB)
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Figure 6 16QAM, R=3/4 ((=8 dB)

4. Conclusions

In this paper we have presented an exponential ESM (Effective SIR Mapping) function, as a candidate ESM for the system-level evaluation of e.g. OFDM performance. It has been shown that a generalized exponential ESM, including an MCS-dependent parameter, can provide good accuracy in case of QPSK modulation. For 16QAM modulation the exponential ESM is less accurate. However, by a suitable parameter choice, the exponential ESM could provide an, in general, optimistic estimate of the OFDM performance, also in case of 16QAM modulation.
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