3GPP TSG RAN WG1 #33
Tdoc R1-03-0853
25th – 29th Aug 2003

New York, USA
Source:

Qualcomm

Title:

Outer Coding for MBMS
Document for:

Discussion and Decision
1 Introduction

The PL performance aspects of the use of S-CCPCH to transport MBMS content have been captured in various other contributions [1][2][3][4]. In the MBMS context, outer coding has been suggested earlier to alleviate the DL required transmit power [5][6].
In this memo, we provide analyze the complexity involved in erasure decoding RS codes. In section 3, we outline the RS erasure correction algorithm, and illustrate it with the aid of a simple example in section 4. In section 5, we compute the number of GF(q) multiplications and additions involved.
2 Outer Code Design
The outer code structure is shown in Figure 1. Each row represents the payload per TTI and there are k such rows. Each information column, consisting of 1-byte per row, is encoded using a [N, k] RS code over GF(256). If there are M-bytes per row, the outer block is encoded M times (There are N*M bytes per outer block.

[image: image1.emf]Information Block

Outer Code Block

Payload

1

Payload

2

Payload

3

Payload

k

Payload

1

Payload

2

Payload

3

Payload

k

Parity

k+1

Parity

k+2

Parity

N

M-bytes

Figure 1

Structure of Outer Code
We note that the outer code structure naturally allows for erasure correction.

1. The inner code CRC indicates whether the inner block is in error or not.

a. Since this does not tell us whether each bit in the inner block is in error, one can pessimistically assume that given an inner block in error, all bits are erased.
2. Each Nx1 column therefore contains correct and erased symbols.

a. We are neglecting the CRC undetected error probability.
3 RS Erasure Correction
The generator polynomial of a linear cyclic code C can be written as:

[image: image2.wmf]Õ

Î

-

=

)

(

)

(

)

(

C

x

x

g

h

l

l

a

wherein:

[image: image3.wmf]code

of

spectrum

Null

)

(

GF(q)

of

element

Primitive

=

=

C

h

a

The generator matrix can be written as:

[image: image4.wmf]]

[

1

1

0

)

1

)(

1

(

1

)

1

(

0

)

1

(

)

1

(

1

11

10

)

1

(

0

01

00

-

-

-

-

-

-

-

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

N

N

k

k

k

N

N

g

g

g

g

g

g

g

g

g

g

g

g

G

L

L

M

M

M

L

L

with the columns of G denoted on the RHS.

A convenient construction for the generator matrix is based upon Vandermonde matrices, wherein:

[image: image5.wmf]ij

ij

g

a

=

Note that the generator matrix has full rank.

Define the information word and the codeword as:

[image: image6.wmf])

(

,

wherein

]

[

Codeword

]

[

n word

Informatio

1

1

0

1

1

0

q

GF

c

m

c

c

c

c

m

m

m

m

i

i

T

N

T

k

Î

=

=

=

=

-

-

L

L

By definition, we have:

[image: image7.wmf]c

m

G

c

G

m

T

T

T

=

×

Þ

=

×

When there are erasures, the received vector can be written as:

[image: image8.wmf]]

[

1

8

6

4

3

0

-

=

N

c

c

e

c

e

c

c

e

e

c

r

L

wherein e denotes the erased symbols in GF(q).

Let the number of erasures e be equal to (N-k).

In such a scenario, the corresponding erasure columns can be removed from G, to compute a new (k x k) matrix.

[image: image9.wmf]T

N

g

g

g

g

g

g

]

[

1

8

6

4

3

0

-

=

W

L

The information word can be recovered by computing:

[image: image10.wmf]T

N

c

c

c

c

c

c

r

r

m

]

[

wherein

1

8

6

4

3

0

1

1

1

-

-

=

×

W

=

L

The inverse can be computed using Gaussian elimination, with the arithmetic in GF(q).
4 Example
Before we explore the generic number of computations involved in the decoding process, let us consider a simple example in GF(8)
.
Consider a [N, k, d] RS code in GF(8). Fixing the code dimension to 3, we have:

[image: image11.wmf]5

1

3

7

1

2

8

3

=

+

-

=

=

=

-

=

=

=

k

N

d

k

q

N

q

4.1 Look-Up Table Setup

This code is capable of correcting 4 erasures. The 8 elements of GF(8) are:

[image: image12.wmf]1

111

1

011

110

010

1

101

1

001

100

0

000

2

2

2

2

+

+

®

+

®

+

®

®

+

®

®

®

®

x

x

x

x

x

x

x

x

Let α be a primitive element of GF(8). By definition:

[image: image13.wmf])

8

(

7

|

)

(

3

}

)

(

{

deg

of

polynomial

Minimal

)

(

7

)

(

GF

o

x

m

x

m

o

Î

"

=

=

=

b

b

a

a

a

a

Note that the order of every element in GF(8) has to divide 7. Since 7 is a prime number, the order is either 1 or 7. Therefore, except 0 and 1, every element is a primitive element of GF(8).

There are 2 irreducible polynomials of degree 3, shown below.

[image: image14.wmf]1

)

(

1

)

(

2

3

2

3

1

+

+

=

+

+

=

x

x

x

f

x

x

x

f

We will pick one of them as the minimal polynomial of α. Both representations are isomorphic. Therefore, we have:

[image: image15.wmf]1

1

1

1

0

2

6

2

5

2

4

3

3

+

=

+

+

=

+

=

+

=

+

+

=

a

a

a

a

a

a

a

a

a

a

a

a

Picking x as the primitive element, the add and exponent tables can be written as:

[image: image16.wmf]2

6

4

5

5

4

3

6

2

3

0

1

1

0

1

a

a

a

a

a

a

a

a

a

a

a

a

a

a

®

®

®

®

®

®

®

®

+

®

t

t

Table 1
Add Table - GF(8)

[image: image17.wmf]5

4

6

2

3

1

0

*

111

110

101

100

011

010

001

000

notation

l

Exponentia

Element

a

a

a

a

a

a

a

a

®

®

®

®

®

®

®

®

®

Table 2
Exponent Table – GF(8)

4.2 Codeword computation

Let the generator matrix be:

[image: image18.wmf]ij

ij

g

G

a

a

a

a

a

a

a

a

a

a

a

a

a

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

wherein

1

1

1

1

1

1

1

1

1

5

3

6

4

2

6

5

4

3

2

Let the information word be:

[image: image19.wmf]T

T

T

m

m

m

m

]

[

]

011

100

010

[

]

[

2

1

0

3

2

=

=

=

a

a

a

Therefore the transmitted codeword becomes:

[image: image20.wmf][

]

]

[

1

1

1

1

1

1

1

1

1

6

5

4

3

2

1

0

5

3

6

4

2

6

5

4

3

2

3

2

c

c

c

c

c

c

c

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

The add and exponent tables are an efficient way of computing the codeword. For example:

[image: image21.wmf]6

5

4

5

3

2

2

3

2

0

)

1

(

)

1

(

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

a

=

×

=

+

×

=

+

=

×

+

=

+

×

+

=

+

+

=

c

Repeating this over all elements of the codeword, we have:

[image: image22.wmf]T

c

]

1

[

4

3

6

4

6

a

a

a

a

a

a

=

4.3 Decoding

Since this code can correct up to 4 erasures, let us assume that the received vector is:

[image: image23.wmf]T

e

e

e

e

r

]

1

[

6

a

a

=

wherein e denotes erasures. The modified vector after eliminating erasures becomes:

[image: image24.wmf]T

r

]

1

[

6

1

a

a

=

The modified generator matrix, after eliminating the 2nd, 3rd, 4th and 6th columns, becomes:

[image: image25.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

=

W

Þ

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

5

6

4

1

5

6

4

1

1

1

1

1

1

1

1

1

1

1

a

a

a

a

a

a

a

a

T

G

G

The information word can be recovered by:

[image: image26.wmf]1

1

r

m

×

W

=

-

The matrix inverse can be computed using Gaussian elimination process.

Consider the extended matrix defined as:

[image: image27.wmf][

]

ú

ú

ú

û

ù

ê

ê

ê

ë

é

¾

¾

¾

¾

¾

¾

¾

®

¾

ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

W

5

4

2

2

3

5

6

3

and

2

rows

 to

1

row

Add

5

6

4

6

1

0

0

1

1

1

1

1

1

1

1

1

a

a

a

a

a

a

a

a

a

a

a

a

a

r

Dividing the 2nd row by
[image: image28.wmf]5

a

, we have:

[image: image29.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

®

¾

ú

ú

ú

û

ù

ê

ê

ê

ë

é

a

a

a

a

a

a

a

a

a

a

a

a

a

5

4

5

3

4

2

and

3

row

 to

add

and

,

1

and

by

2

row

Multiply

5

4

2

4

5

6

0

0

1

0

0

1

0

1

0

1

1

1

2

Dividing 3rd row by
[image: image30.wmf]5

a

, we have:

[image: image31.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

¾

®

¾

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

1

and

2

rows

 to

add

and

and

by

3

row

Multiply

3

4

5

3

4

1

0

0

0

1

0

0

0

1

1

0

0

1

0

0

1

4

5

a

a

a

a

a

a

a

a

a

a

Therefore, we have:

[image: image32.wmf]ú

ú

ú

û

ù

ê

ê

ê

ë

é

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

×

ú

ú

ú

û

ù

ê

ê

ê

ë

é

3

2

2

1

0

1

0

0

0

1

0

0

0

1

a

a

a

m

m

m

The recovered information word is:

[image: image33.wmf]T

T

m

]

011

100

010

[

]

[

3

2

=

=

a

a

a

5 Complexity Analysis
In section 4, we showed an example of the decoding algorithm. It is clear that the main aspect of the decoding algorithm is the computation of the inverse of the transpose of this matrix by Gaussian elimination.
Let us consider a generic [N, k, d] RS code over
[image: image34.wmf])

2

(

n

GF

. We have:

[image: image35.wmf]block

code

outer

per

columns

of

Number

)

(

in

 vector

1

k x

)

(

in

Matrix

k

k x

code

of

distance

Minimum

parameter

shortening

Code

1

2

0

1

min

min

=

=

=

=

=

-

-

=

-

-

=

=

N

q

GF

r

q

GF

Ω

d

a

a

d

q

k

a

q

N

q

n

5.1 Systematic Generator Matrix

Note that all information symbols need not be recovered using Gaussian elimination if the code rate is greater than 0.5 and the generator matrix is systematic. Note that the generator matrix G in the example in section 3 can be converted to a systematic matrix by row manipulations. We have:

[image: image36.wmf]matrix

Parity

k)

-

(N

k x

matrix

Identity

k

k x

wherein

]

[

,

,

=

=

=

-

-

k

N

k

k

k

N

k

k

P

I

P

I

G

Define:

[image: image37.wmf]}

,

{

min

k

N

k

d

-

=

Therefore, in the worst-case, d symbols will need to be recovered.
5.2 Matrix inverse – Gaussian Elimination Algorithm

The following computations are needed for Gaussian elimination. There are k iterations.

For the 1st iteration with 1st row as the pivot row, we have:

1. Division of pivot row by first element
2. Multiply the pivot row with first element of every other row
3. Add the corresponding multiplied pivot row with every other row
The number of pivot rows is equal to the number of symbols that need to be recovered.
Therefore, over all iterations, the number of computations is shown in Table 3.

	Operation
	Number of Computations

	Multiplications
	
[image: image38.wmf]0

0

2

)

(

2

/

)

2

1

2

(

N

d

k

d

N

d

k

d

×

-

×

+

×

+

+

-

×

×

	Additions
	
[image: image39.wmf]0

0

)

(

2

/

)

2

1

2

(

)

1

(

N

d

k

d

N

d

k

d

d

×

-

×

+

×

+

+

-

×

×

×

-

	Total
	
[image: image40.wmf]0

0

)

(

2

2

/

)

2

1

2

(

)

1

2

(

N

d

k

d

N

d

k

d

d

×

-

×

×

+

×

+

+

-

×

×

×

-

×

Table 3

Number of Computations
5.3 Look-Up Tables

To perform additions and multiplications in GF(q), there are different choices of LUT.

1. Exponential Table (Contains the corresponding exponent of the primitive element

2. Inverse Table (Contains the inverse of each element

The sizes of the tables are shown in Table 4.

	Table Type
	Size

	Exponential
	256 bytes

	Inverse
	256 bytes

Table 4
Look-Up Tables
Using the tables shown in Table 4:
1. Addition can be performed as a bit-wise XOR of elements stored as polynomials over GF(2)

2. Multiplication be performed using the exponential and inverse tables
5.4 Impact of Data Rate and TTI

Consider the following:

[image: image41.wmf]block

outer

per

columns

of

Number

block

inner

an

by

spanned

rows

block

outer

of

Number

(bytes)

memory

block

outer

of

size

Required

)

(

log

(ms)

TTI

(kbps)

Rate

Data

0

2

=

=

=

=

=

=

N

N

N

q

n

T

R

r

b

Since we only need to store the first k received symbols correctly, we have:

[image: image42.wmf]r

b

N

k

n

T

k

N

R

N

1

1

×

×

ú

ú

ù

ê

ê

é

×

×

×

=

This leads us to:

[image: image43.wmf]block

outer

in

ns

computatio

of

number

Total

0

=

=

tot

b

N

k

N

N

The number of GF(256) computations for different scenarios is outlined in Table 5.
	Rate (kbps)
	TTI (ms)
	N
	k
	
[image: image44.wmf]r

N

	Outer block size (KB)
	
[image: image45.wmf]0

N

	
[image: image46.wmf]tot

N

	Computations per second (Kcps)

	64
	20
	16
	12
	1
	2.5
	214
	19,982
	62.44

	64
	40
	16
	12
	1
	5.0
	427
	39,578
	61.84

	64
	80
	16
	12
	1
	10.0
	854
	78,862
	61.61

	64
	40
	16
	12
	2
	2.5
	214
	19,982
	31.22

	64
	80
	16
	12
	4
	2.5
	214
	19,982
	15.61

	64
	20
	15
	11
	1
	2.4
	219
	18,662
	62.21

	64
	40
	15
	11
	1
	4.7
	437
	36,974
	61.62

	64
	80
	15
	11
	1
	9.4
	873
	73,598
	61.33

Table 5
Memory Size and Number of computations – GF(256)

6 Conclusions
In this document, we outlined the outer code design and gave a detailed explanation of the decoding procedure. The associated erasure decoder complexity was shown to be minimal, with less than 0.1 Mcps. This allows for a trivial software decoder implementation, with no hardware changes needed. Example implementations are shown in [9][10].
References
1. Effect of SHO in MBMS, Qualcomm Inc., R1-02-1098

2. Evaluation of combining gains for MBMS (incl. STTD), Qualcomm Inc., R1-02-1234
3. Link performance incl. SHO, STTD & longer TTI, Qualcomm Inc., R1-02-1354
4. Effect of UE Capability on MBMS Operation, Qualcomm Inc., R1-02-1355

5. MBMS design Considerations, Qualcomm Inc., R1-02-1099

6. Evaluation of outer code gains for MBMS (incl. STTD and SHO), Qualcomm Inc., R1-02-1235
7. Redundancy and Discrete Fourier Transform, J.K.Wolf, Proceedings of 1982 Conference on Information Sciences and Systems, pp. 156-158, Princeton, NJ, March 1982
8. Data Transmission Using Error Detection Codes, R.Padovani and J.K.Wolf, IEEE Global Telecommunications Conference, 2, pp. 626-631, 1982
9. On the Feasibility of Software FEC, Luigi Rizzo, http://www.iet.unipi.it/~luigi/softwarefec.ps
10. Effective Erasure Codes for Reliable Computer Communication Protocols, Luigi Rizzo, Computer Communication Review, vol.27, no.2, pp. 24-36, April 1997

� Using GF(8) instead of GF(256) allows for analytical tractability.

_1119958284.unknown

_1119964111.unknown

_1122704818.vsd

_1122707726.unknown

_1122750374.unknown

_1122751948.unknown

_1122892229.unknown

_1122750397.unknown

_1122750361.unknown

_1122734574.unknown

_1122707469.unknown

_1120457828.unknown

_1120543512.unknown

_1120544902.unknown

_1120457861.unknown

_1120457962.unknown

_1119964173.unknown

_1120034978.unknown

_1119964161.unknown

_1119959229.unknown

_1119963663.unknown

_1119964014.unknown

_1119962892.unknown

_1119961607.unknown

_1119958504.unknown

_1119958517.unknown

_1119958883.unknown

_1119958496.unknown

_1119952156.unknown

_1119953513.unknown

_1119954877.unknown

_1119956397.unknown

_1119957883.unknown

_1119956594.unknown

_1119955062.unknown

_1119954271.unknown

_1119952941.unknown

_1119953210.unknown

_1119952434.unknown

_1119938559.unknown

_1119946182.unknown

_1119952053.unknown

_1119938790.unknown

_1119936185.unknown

_1119938039.unknown

_1119783462.unknown

