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1 Introduction

The PL performance aspects of the use of S-CCPCH to transport MBMS content have been captured in various other contributions [1][2][3][4]. In the MBMS context, outer coding has been suggested earlier to alleviate the DL required transmit power [5][6].
In this memo, we provide analyze the complexity involved in erasure decoding RS codes. In section 3, we outline the RS erasure correction algorithm, and illustrate it with the aid of a simple example in section 4. In section 5, we compute the number of GF(q) multiplications and additions involved.
2 Outer Code Design
The outer code structure is shown in Figure 1. Each row represents the payload per TTI and there are k such rows. Each information column, consisting of 1-byte per row, is encoded using a [N, k] RS code over GF(256). If there are M-bytes per row, the outer block is encoded M times ( There are N*M bytes per outer block.
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Figure 1

Structure of Outer Code
We note that the outer code structure naturally allows for erasure correction.

1. The inner code CRC indicates whether the inner block is in error or not. 

a. Since this does not tell us whether each bit in the inner block is in error, one can pessimistically assume that given an inner block in error, all bits are erased.
2. Each Nx1 column therefore contains correct and erased symbols.

a. We are neglecting the CRC undetected error probability.
3 RS Erasure Correction
The generator polynomial of a linear cyclic code C can be written as:
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wherein:
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The generator matrix can be written as:
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with the columns of G denoted on the RHS.

A convenient construction for the generator matrix is based upon Vandermonde matrices, wherein:


[image: image5.wmf]ij

ij

g

a

=


Note that the generator matrix has full rank.

Define the information word and the codeword as:
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By definition, we have:
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When there are erasures, the received vector can be written as:
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wherein e denotes the erased symbols in GF(q).

Let the number of erasures e be equal to (N-k). 

In such a scenario, the corresponding erasure columns can be removed from G, to compute a new (k x k) matrix.
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The information word can be recovered by computing:
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The inverse can be computed using Gaussian elimination, with the arithmetic in GF(q).
4 Example
Before we explore the generic number of computations involved in the decoding process, let us consider a simple example in GF(8)
.
Consider a [N, k, d] RS code in GF(8).  Fixing the code dimension to 3, we have:
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4.1 Look-Up Table Setup

This code is capable of correcting 4 erasures. The 8 elements of GF(8) are:
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Let α be a primitive element of GF(8). By definition:
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Note that the order of every element in GF(8) has to divide 7. Since 7 is a prime number, the order is either 1 or 7. Therefore, except 0 and 1, every element is a primitive element of GF(8).

There are 2 irreducible polynomials of degree 3, shown below.
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We will pick one of them as the minimal polynomial of α. Both representations are isomorphic. Therefore, we have:
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Picking x as the primitive element, the add and exponent tables can be written as:
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Table 1
Add Table - GF(8)
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Table 2
Exponent Table – GF(8)

4.2 Codeword computation

Let the generator matrix be:
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Let the information word be:
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Therefore the transmitted codeword becomes:
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The add and exponent tables are an efficient way of computing the codeword. For example:
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Repeating this over all elements of the codeword, we have:
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4.3 Decoding

Since this code can correct up to 4 erasures, let us assume that the received vector is:
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wherein e denotes erasures. The modified vector after eliminating erasures becomes:
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The modified generator matrix, after eliminating the 2nd, 3rd, 4th and 6th columns, becomes:
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The information word can be recovered by:
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The matrix inverse can be computed using Gaussian elimination process.

Consider the extended matrix defined as:
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Dividing the 2nd row by 
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Dividing 3rd row by 
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Therefore, we have:
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The recovered information word is:
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5 Complexity Analysis
In section 4, we showed an example of the decoding algorithm. It is clear that the main aspect of the decoding algorithm is the computation of the inverse of the transpose of this matrix by Gaussian elimination.
Let us consider a generic [N, k, d] RS code over
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5.1 Systematic Generator Matrix

Note that all information symbols need not be recovered using Gaussian elimination if the code rate is greater than 0.5 and the generator matrix is systematic. Note that the generator matrix G in the example in section 3 can be converted to a systematic matrix by row manipulations. We have:
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Define:
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Therefore, in the worst-case, d symbols will need to be recovered.
5.2 Matrix inverse – Gaussian Elimination Algorithm

The following computations are needed for Gaussian elimination. There are k iterations. 

For the 1st iteration with 1st row as the pivot row, we have:

1. Division of pivot row by first element
2. Multiply the pivot row with first element of every other row
3. Add the corresponding multiplied pivot row with every other row
The number of pivot rows is equal to the number of symbols that need to be recovered.
Therefore, over all iterations, the number of computations is shown in Table 3.

	Operation
	Number of Computations

	Multiplications
	
[image: image38.wmf]0

0

2

)

(

2

/

)

2

1

2

(

N

d

k

d

N

d

k

d

×

-

×

+

×

+

+

-

×

×



	Additions
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	Total
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Table 3

Number of Computations
5.3 Look-Up Tables

To perform additions and multiplications in GF(q), there are different choices of LUT.

1. Exponential Table ( Contains the corresponding exponent of the primitive element

2. Inverse Table ( Contains the inverse of each element

The sizes of the tables are shown in Table 4.

	Table Type
	Size

	Exponential
	256 bytes

	Inverse
	256 bytes


Table 4
Look-Up Tables
Using the tables shown in Table 4:
1. Addition can be performed as a bit-wise XOR of elements stored as polynomials over GF(2)

2. Multiplication be performed using the exponential and inverse tables
5.4 Impact of Data Rate and TTI

Consider the following:
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Since we only need to store the first k received symbols correctly, we have:
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This leads us to:
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The number of GF(256) computations for different scenarios is outlined in Table 5.
	Rate (kbps)
	TTI (ms)
	N
	k
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	Outer block size (KB)
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	Computations per second (Kcps)

	64
	20
	16
	12
	1
	2.5
	214
	19,982
	62.44

	64
	40
	16
	12
	1
	5.0
	427
	39,578
	61.84

	64
	80
	16
	12
	1
	10.0
	854
	78,862
	61.61

	64
	40
	16
	12
	2
	2.5
	214
	19,982
	31.22

	64
	80
	16
	12
	4
	2.5
	214
	19,982
	15.61

	64
	20
	15
	11
	1
	2.4
	219
	18,662
	62.21

	64
	40
	15
	11
	1
	4.7
	437
	36,974
	61.62

	64
	80
	15
	11
	1
	9.4
	873
	73,598
	61.33


Table 5
Memory Size and Number of computations – GF(256)

6 Conclusions
In this document, we outlined the outer code design and gave a detailed explanation of the decoding procedure. The associated erasure decoder complexity was shown to be minimal, with less than 0.1 Mcps. This allows for a trivial software decoder implementation, with no hardware changes needed. Example implementations are shown in [9][10].
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� Using GF(8) instead of GF(256) allows for analytical tractability.
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