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1 Introduction

Multiple antennas at the transmitter and receiver provide diversity gain in the fading channel environment. By employing multiple antennas, multiple spatial channels are created, and it is unlikely all the channels will fade simultaneously. Many transmit diversity schemes have been proposed in the literature offering different complexity vs. performance trade-offs. It is well known that there are various open-loop transmit diversity schemes such as space-time transmit diversity (STTD)[1], space-frequency transmit diversity (SFTD)[2], frequency hopping [3], and so on. These open-loop transmit diversity schemes can be simply implemented without any feedback information from the mobile stations. However, achievable gain due to open-loop transmit diversity is limited for high data rate transmission. 

Generally, the closed-loop transmit diversity schemes provide larger space diversity gain utilizing the feedback channel information. Furthermore, a lot of frequency diversity gain can be obtained using the subcarrier allocation algorithms utilizing the feedback channel information[4]. It explains that the combining of multiple antenna selection diversity and the subcarrier allocation algorithm provides excellent performance improvement. Theoretically, we can employ the multiple-antenna selection diversity and the subcarrier allocation algorithm based on the feedback CQI (Channel Quality Information) bits in Rel.6. However, it is difficult to use the closed-loop scheme in OFDM systems since Node-B requires entire channel information for the subcarriers. It is almost impossible that UE sends all CQI bits for subcarriers to Node-B due to the narrow feedback bandwidth of uplink WCDMA. 
In this contribution we propose the group-wise closed-loop antenna selective transmit diversity scheme that is appropriate for the Rel.6. The proposed scheme shows large space and frequency diversity gains with rough (or only few levels of) channel quality information. The small CQI bits reduce the amount of feedback information bits significantly. Thus, the proposed scheme provides a lot of advantages in the OFDM based HSDPA downlink structure. In Section 2, the description of the proposed group-wise antenna selective transmit diversity scheme is illustrated. Performance improvement is shown in Section 3. In Section 4, the benefits of the group-wise scheme are presented. Finally conclusions are drawn in Section 5.      

2 Group-wise Subcarrier Allocation Algorithm for Multiple Antenna OFDM Systems
2.1 
2.2 
2.3 
2.3.1 

2.4 Description of the proposed scheme  
2.5 


2.6 


2.7 
The structure of the multiple-antenna OFDM system with group-wise subcarrier allocation algorithm is shown in Figure 1 when multiple transmit antennas employed. The group mapper divides 
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 subcarriers in each subgroup. Thus the number of subcarriers in each subgroup is given by
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Figure 1:  Centre cell antenna bearing orientation diagram

Each subgroup is assigned to each antenna properly with antenna mapper. In this manner, several groups of subcarriers, which is much less than 
[image: image12.wmf]N

, are transmitted from each antenna. Then we expect the PAPR (Peak-to-Average Power Ratio) is reduced to a factor of 
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2.8 CQI bit generation
 In Rel.5, CQI mapping is tabulated with the transport block size[5]. For the purpose of CQI reporting, the UE shall estimate the SIR of the received signal. However, the SIR information of all subcarrier groups should be sent to Node-B to use group-wise subcarrier allocation. In this contribution, we propose CQI generation method using SIR of each subcarrier.
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[image: image20.wmf]m

n

k

,

,

r

 represent the SIR for 
[image: image21.wmf]k

-th user, 
[image: image22.wmf]n

-th subcarrier and 
[image: image23.wmf]m

-th antenna. Then the average SIR for the 
[image: image24.wmf]g

-th group, 
[image: image25.wmf]k

-th user and n-th antenna is given by

[image: image26.wmf]G

g

Lg

g

L

n

m

n

k

g

m

k

L

,

2

,

1

   

,

1

)

1

(

,

,

)

(

,

=

=

å

-

-

=

r

r

                                                                   (2)

Using the average SIR obtained from (2), the CQI is determined by the mapping table. By the mapping table and 
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-th group is obtained as 


[image: image31.wmf]ï

ï

î

ï

ï

í

ì

>

-

£

<

<

=

-

-

2

)

(

,

)

(

,

1

0

)

(

,

)

(

,

  

f

,

1

  

f

,

  

f

,

0

Q

g

m

k

q

g

m

k

q

g

m

k

g

m

k

i

Q

i

q

i

h

r

h

r

h

h

r

l

                                                                  (3)

where the 
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 is interpreted that there is “deep null” in this 
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-th group. Thus, the quality of each channel can be expressed as one of the 
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 values due to its frequency selective channel response. For example, let 
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Using feedback CQI bits, the g-th subcarrier group is assigned to proper user and antenna whose index is 
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The first step

· Let the transmitter know the feedback information regarding CQI, 
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The second step (When there is no best quality 
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· User index 
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 is determined according to the required bit rate of each user

· Antenna 
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 is determined by channel quality of 
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In this way, all the subgroups (
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) are assigned to the particular user through one of the antennas so as to minimize the total transmit power while satisfying QoS.  
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Figure 2: The frequency responses of VA30 channel with 2 users and 2 transmit antennas

3 Performance Comparisons
Figure 3 shows the BER performances with the various transmission diversity schemes. The channel model is given to ITU-R Vehicular A model with 30Km/h mobility (VA30, Doppler frequency = 55.5Hz). The reallocation interval is given to be 45 symbols (5 slots in the first parameter set of TR25.892). The number of subcarriers is equal to N=512. Detailed parameters are summarized in Table 1. 
The solid line with diamond corresponds to the BER performance with one transmit antenna and single user (upper bound). In this case, the performance is the worst since there is no transmit diversity processing gain. The solid line with plus corresponds to the BER performance with maximum selection transmit diversity among antennas with two transmit antennas and two users and no QoS constraints assumed. In this case, it is known that the channel capacity is maximized and the performance result is approached to the optimum (lower bound)
The SFTD and STTD for open-loop transmit diversity has a couple of dB gains compared without transmit diversity (diamond). The SFTD has performance degradation due to the distortion caused by frequency selectivity. It can be seen that the proposed schemes (with group sizes 
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Similarly, Figure 4 shows the BER performances with the different CQI bits. There is about 2dB performance losses when comparing with 32 groups and 2-bit CQI (256 bits feedback information) and with 8 groups with 1-bit CQI (32 bits feedback information). Thus there is trade-offs such that the more feedback information the more system gains. 







	Parameter
	Explanation/Assumption

Comments

	Parameter set
	
Set 1 (512 subcarriers) is used

	Channel model
	ITU-R VA30

	Multi-cell interference 
	No


	Number of user equipments
	
2

	Number of antennas
	2

	Reallocation period

(CQI update period)
	5 slots (=45 OFDM symbols)

	Receiver scheme
	One-tap zero-forcing equalizer

	Required bit rate
	UE1 : 400 bits/OFDM symbol

UE2 : 400 bits/OFDM symbol

	Modulation scheme
	QPSK

	Channel coding
	1/2 convolutional coding

	Carrier frequency
	2000 MHz

	Doppler frequency 
	55.55Hz

	Channel estimation
	Ideal

	FFT size
	512

	
	

	


	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


Table 1 HSDPA OFDM link simulation conditions
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Figure 3: The BER comparisons with various transmit diversity schemes
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Figure 4: Relation between the group size, CQI resolution and BER performance
4 Benefits of the Group-wise Scheme
For diversity gain, several schemes are proposed based on the frequency and/or transmit antenna diversity. As shown in [6], coded and uncoded BER can be decreased using appropriate time-frequency mapping patterns. Frequency hopping also can be a good candidate since it may mitigate intercell-interference. At the WG1#31 meeting, transmit diversity schemes such as STTD (Space-Time Transmit Diversity) or SFTD (Space-Frequency Transmit Diversity) in OFDM are introduced. However, all these proposals assume an open-loop diversity scheme. Although considerable diversity gain can be achieved by deploying the open-loop diversity scheme, much more gain can be obtained by using a closed-loop scheme. 
Moreover, it can be seen that huge diversity gain is obtained using simple combination of frequency diversity and antenna selection diversity in Section 3. Also, small feedback bandwidth is sufficient for CQI bit transmission when group-wise scheme is properly used. This implies that the several users can transmit their CQI bits in a coherence time. Thus the closed-loop scheme can be operated in vehicular channels as well as pedestrian channels. Table 2 shows the coherence time according to the Doppler frequency [7]. For appropriate group-wise subcarrier allocation, Node-B should receive CQI bits of all UE from WCDMA uplink channel (HS-DPCCH) in a coherence time. As shown in Figure 5, 20 CQI bits can be transmitted during 2msec in HS-DPCCH. The amount of feedback information is dependent on the number of groups, users, CQI bits and antennas. Thus these parameters should be determined by the transmission rate of the uplink WCDMA channel. 
The simplified allocation algorithm is used for the proposed scheme. To combat channel impairments due to time-varying characteristics, periodic re-allocation is required. It indicates that the allocation algorithm has low computational complexity. Also, the performance degradation due to high PAPR is mitigated by the proposed scheme since subcarriers are fairly distributed to multiple antennas. 
	Frequency(GHz)
	Speed(kmph)
	Doppler(Hz)
	Coherence time(ms)

	1.9
	3
	5.3
	80.15

	1.9
	30
	52.8
	8.01

	1.9
	120
	211.1
	2.00


Table 2 Coherence time according to the channel environments
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Figure 5: structure of HS-DPCCH (uplink channel in WCDMA)
5 Conclusions
The group-wise antenna selective transmit diversity is a promising technique for high data rate transmission and multipath channel environment. The simplified real-time subgroup (rather than sub-carrier) allocation algorithm is introduced. With the proposed subgroup allocation scheme only small amount of CQI bits is required for feedback information at the sacrifice of a couple of dB performance gain. The antenna selection diversity for close-loop transmit diversity is superior to the open-loop transmit diversity such as STTD and SFTD. 

With the small amount of feedback information, the uplink interference and the required transmit power can be minimized. Furthermore, the PAPR is reduced when the subcarriers are fairly distributed to the multiple antennas. Deep nulls in the frequency selective channel can be avoided by adaptive subgroup allocation. So far we notice that the group-wise antenna selective transmit diversity provides a lot of benefits when the multiple antennas are employed in OFDM systems.
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� Note that this quantity differs from the more traditional Ior/Ioc, which represents the ratio of same cell power to other cell interference and which usually corresponds to the fading-independent long term C/I.  The definition used here includes the effect of the current instantaneous fading from each of the interfering Node-Bs. 


� A coding block size of 5114 bits is appropriate for traffic models such as FTP and HTTP, where each IP packet contains 12000 bits.  However, it should be noted that the block size may depend on the traffic type being considered.  Some traffic types will have much smaller IP packets and would therefore benefit from smaller coding blocks


� Note that P1_1 and P1_2 are used here to refer to the two sets parity sequences for the first stage RM..
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