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Text Proposal
5.1.3
Transformation from a LCS to a GCS

A GCS with coordinates (x, y, z, 
[image: image1.wmf]q

, 
[image: image2.wmf]f

) and unit vectors (
[image: image3.wmf]q

ˆ

, 
[image: image4.wmf]f

ˆ

) and an LCS with "primed" coordinates (x’, y’, z’, 
[image: image5.wmf]'

q

, 
[image: image6.wmf]'

f

) and "primed" unit vectors (
[image: image7.wmf]'

ˆ

q

, 
[image: image8.wmf]'

ˆ

f

) are defined with a common origins in Figures 5.1.3-1 and 5.1.3-2. Figure 5.1.3-1 illustrates the sequence of rotations that relate the GCS (gray) and the LCS (blue). 
Figure 5.1.3-2 shows the coordinate direction and unit vectors of the GCS (gray) and the LCS (blue). 
Note that the vector fields of the antenna array elements are defined in the LCS. In Figure 5.1.3-1 we consider an arbitrary 3D-rotation of the LCS with respect to the GCS given by the angles (, (, (. The set of angles (, (, ( can also be termed as the orientation of the antenna array with respect to the GCS. 
Note that the transformation from a LCS to a GCS depends only on the angles (, (, (. The angle ( is called the bearing angle, ( is called the downtilt angle and ( is called the slant angle. 

[image: image9.png]



Figure 5.1.3-1: Orienting the LCS (blue) with respect to the GCS (gray) by a sequence of 3 rotations: (, (, (.

[image: image10.png]



Figure 5.1.3-2: Definition of spherical coordinates and unit vectors in both the GCS and LCS.

Let 
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denote an antenna element pattern in the LCS and 
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denote the same antenna element pattern in the GCS. Then the two are related simply by 
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with 
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q

 and 
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given by (5.1-7) and (5.1-8).

Let us denote the polarized field components in the LCS by 
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and in the GCS by 
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. Then they are related by equation (5.1-11). 

Any arbitrary 3-D rotation can be specified by at most 3 elemental rotations, and following the framework of Figure 5.1.3-1, a series of rotations about the z, 
[image: image20.wmf]y

&

and 
[image: image21.wmf]x

&
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axes are assumed here, in that order. 
The dotted and double-dotted marks indicate that the rotations are intrinsic, which means that they are the result of one (() or two ((() intermediate rotations. In other words, the 
[image: image22.wmf]y

&

 axis is the original y axis after the first rotation about z, and the 
[image: image23.wmf]x

&

&

 axis is the original x axis after the first rotation about z and the second rotation about
[image: image24.wmf]y

&

. 
A first rotation of ( about z sets the antenna bearing angle (i.e. the sector pointing direction for a BS antenna element). 
The second rotation of ( about 
[image: image25.wmf]y

&

 sets the antenna downtilt angle. 
Finally, the third rotation of ( about 
[image: image26.wmf]x

&

&

 sets the antenna slant angle. 
The orientation of the x, y and z axes after all three rotations can be denoted as 
[image: image27.wmf]x
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&
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, 
[image: image28.wmf]y
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 and 
[image: image29.wmf]z
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&

. 
These triple-dotted axes represents the final orientation of the LCS, and for notational purposes denoted as the x’, y’ and z’ axes (local or "primed" coordinate system.

In order to establish the equations for transformation of the coordinate system and the polarized antenna field patterns between the GCS and the LCS, it is necessary to determine the composite rotation matrix that describes the transformation of point (x, y, z) in the GCS into point (x’, y’, z’) in the LCS. 
This rotation matrix is computed as the product of three elemental rotation matrices. 
The matrix to describe rotations about the z,
[image: image30.wmf]y

&

and 
[image: image31.wmf]x

&

&

 axes by the angles (, ( and (  respectively and in that order is defined in equation (5.1-2). 
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(5.1-2)
The reverse transformation is given by the inverse of R, which is also equal to the transpose of R since it is orthogonal.
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(5.1-3)
The simplified forward and reverse composite rotation matrices are given in equations (5.1-4) and (5.1-5).
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(5.1-4)
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(5.1-5)
These transformations can be used to derive the angular and polarization relationships between the two coordinate systems. 

In order to establish the angular relationships, consider a point (x, y, z) on the unit sphere defined by the spherical coordinates ((=1, (, (), where ( is the unit radius, ( is the zenith angle measured from the +z-axis, and ( is the azimuth angle measured from the +x-axis in the x-y plane.  The Cartesian representation of that point is given by
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(5.1-6)
The zenith angle is computed as 
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 are the Cartesian unit vectors.  If this point represents a location in the GCS defined by ( and (, the corresponding position in the LCS is given by 
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, from which local angles (’ and (’ can be computed.  The results are given in equations (5.1-7) and (5.1-8).
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(5.1-7)
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(5.1-8)
These formulae relate the spherical angles ((, () of the GCS to the spherical angles ((’, (’) of the LCS given the rotation operation defined by the angles ((, (, (). 

Let us denote the polarized field components
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,

(

f

q

q

F

, 
[image: image46.wmf])

,

(

f

q

f

F

 in the GCS and
[image: image47.wmf])

'

,

'

(

'

f

q

q

F

, 
[image: image48.wmf])

'

,

'

(

'

f

q

f

F

 in the LCS. Then they can be related by
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(5.1-9)
In this equation, 
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 and 
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 represent the spherical unit vectors of the GCS, and 
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 and 
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are the representations in the LCS.  The forward rotation matrix R transforms the LCS unit vectors into the GCS frame of reference.  
These pairs of unit vectors are orthogonal and can be represented as shown in Figure 5.1.3-3.


[image: image54.png]



Figure 5.1.3-3: Rotation of the spherical basis vectors by an angle ( due to the orientation of the LCS with respect to the GCS

Assuming an angular displacement of ( between the two pairs of unit vectors, the rotation matrix of equation AAH can be further simplified as:
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(5.1-10)
and equation (5.1-9) can be written as:
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(5.1-11)
The angle ( can be computed in numerous ways from equation (5.1-10), with one such way approach being
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(5.1-12)

  The dot products are readily computed using the Cartesian representation of the spherical unit vectors.  
The general expressions for these unit vectors are given by
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(5.1-13)
and



[image: image59.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

+

-

=

0

cos

sin

ˆ

f

f

f

.
(5.1-14)
The angle ( can be expressed as a function of mechanical orientation ((, (, () and spherical position ((, (), and is given by
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(5.1-15)
It can be shown that
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can be expressed as:
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(5.1-16)


[image: image64.wmf](

)

(

)

(

)

(

)

(

)

(

)

2

sin

sin

sin

cos

cos

sin

cos

cos

cos

1

cos

sin

sin

cos

sin

sin

q

a

f

g

a

f

g

b

q

g

b

a

f

g

a

f

g

b

y

-

-

-

+

-

-

+

-

=


(5.1-17)
5.1.4
Transformation from an LCS to a GCS for downtilt angle only

In this clause equations are provided for the transformation from LCS to GCS assuming that the orientation of the LCS (with respect to the GCS) is such that the bearing angle (=0, the downtilt angle ( is non-zero and the slant angle (=0. In other words the y’-axis of the LCS is parallel to the y-axis of the GCS. Considering a BS antenna element the x-axis of the GCS is aligned with the pointing direction of the sector. Mechanical downtilt is modelled as a rotation of the LCS around the y-axis. For zero mechanical downtilt the LCS coincides with the GCS. 

This transformation relates the spherical angles (
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) in the global coordinate system to spherical angles (
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) in the local (antenna-fixed) coordinate system and is defined as follows:
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where 
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 is the mechanical tilt angle around the y-axis as defined in Figure 5.1.4. 
Note that the equations (5.1-7), (5.1-8) reduce to equations (5.1-18), (5.1-19) if both ( and ( are zero.
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with 
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 and 
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given by (5.1-18) and (5.1-19).
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Figure 5.1.4: Definition of angles and unit vectors when 
the LCS has been rotated an angle 
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 around the y-axis of the GCS

For a mechanical tilt angle 
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 of the radiation pattern in the local (antenna-fixed) coordinate system as: 
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(5.1-22)
where 
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 are defined as in (5.1-18) and (5.1-19), and 
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 is defined as:
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Note that the equation (5.1-15) is reduced to equation (5.1-23) if both ( and ( are zero.
As an example, in the horizontal cut, i.e., for 
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, equations (5.1-18), (5.1-19) and (5.1-23) become
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Unaffected text was omitted.

7.1.1
Modelling polarized antennas

Model-1:

In case of polarized antenna elements assume 
[image: image99.wmf]z

 is the polarization slant angle where 
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 degrees corresponds to a purely vertically polarized antenna element and 
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degrees correspond to a pair of cross polarized antenna elements. Then the antenna element field components in the elevation and azimuth polarization directions are given by
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where 
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Note that the zenith and the azimuth field components 
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 are defined in terms of the spherical basis vectors of an LCS as defined in clause 5.1.2.  The difference between the single-primed and the double-primed components is that the single-primed field components account for the polarization slant and the double-primed field components do not. For a single polarized antenna (purely vertically polarized antenna) we can write 
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is the 3D antenna element gain pattern as a function of azimuth angle 
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 in the LCS.  The 3D antenna element gain pattern 
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is defined in Table 7.1-1.

Model-2:

In case of polarized antennas, the polarization is modelled as angle-independent in both azimuth and elevation, in an LCS. For a linearly polarized antenna, the antenna element field pattern, in the vertical polarization and in the horizontal polarization, are given by
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and
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respectively, where 
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 is the polarization slant angle and 
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is the 3D antenna element gain pattern as a function of azimuth angle, 
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 degrees correspond to a purely vertically polarized antenna element. The vertical and horizontal field directions are defined in terms of the spherical basis vectors, 
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 as defined in Table 7.1-1.
Typical antennas have polarization parallelity that is lower than the polarization parallelity of dipoles and, in addition, typical antennas have polarization parallelity close to zero in the main beam. 
This observation is made from slide 5 in R1-140765 [6].
Unaffected text was omitted
7.2.1
Autocorrelation of shadow fading

The long-term (log-normal) fading in the logarithmic scale around the mean path loss PL (dB) is characterized by a Gaussian distribution with zero mean and standard deviation. Due to the slow fading process versus distance x 
(x is in the horizontal plane), adjacent fading values are correlated. Its normalized autocorrelation function R(x) can be described with sufficient accuracy by the exponential function ITU-R Rec. P.1816 [5]
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with the correlation length dcor being dependent on the environment, see the correlation parameters for shadowing and other large scale parameters in Table 7.3-6 (Channel model parameters).

7.3
Fast fading model

The radio channels are created using the parameters listed in Table 7.3-6. The channel realizations are obtained by a step-wise procedure illustrated in Figure 7.3-1 and described below. It has to be noted that the geometric description covers arrival angles from the last bounce scatterers and respectively departure angles to the first scatterers interacted from the transmitting side. The propagation between the first and the last interaction is not defined. Thus, this approach can model also multiple interactions with the scattering media. This indicates also that e.g., the delay of a multipath component cannot be determined by the geometry. In the following steps, downlink is assumed. For uplink, arrival and departure parameters have to be swapped. Note that channel coefficient generation (steps 4 to 11) for LOS O-to-I case follow the same method as the NLOS case. 
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Figure 7.3-1: Channel coefficient generation procedure
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Figure 7.3-2: Definition of a global coordinate system showing the zenith angle θ and the azimuth angle ϕ. θ=00 points to zenith and θ=+900 points to the horizon. 
The spherical basis vectors 
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 and 
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 shown above are defined based on the direction of propagation
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Table 7.3-1: Notations in the global coordinate system (GCS)

	Parameter
	Notation
	Comments

	LOS AOD
	ϕLOS,AOD
	defined by ϕ

	LOS AOA
	ϕLOS,AOA
	defined by ϕ

	LOS ZOD
	θLOS,ZOD
	defined by θ

	LOS ZOA
	θLOS,ZOA
	defined by θ

	AOA for cluster n
	ϕn,AOA
	defined by ϕ

	AOD for cluster n
	ϕn,AOD
	defined by ϕ

	AOA for ray m in cluster n
	ϕn,m,AOA
	defined by ϕ

	AOD for ray m in cluster n
	ϕn,m,AOD
	defined by ϕ

	ZOA for cluster n
	θn,ZOA
	defined by θ

	ZOD for cluster n
	θn,ZOD
	defined by θ

	ZOA for ray m in cluster n
	θn,m,ZOA
	defined by θ

	ZOD for ray m in cluster n
	θn,m,ZOD
	defined by θ

	Receive antenna element u field pattern in the direction of the spherical basis vector 
[image: image136.wmf]q

ˆ


	Frx,u,θ
	

	Receive antenna element u field pattern in the direction of the spherical basis vector 
[image: image137.wmf]f
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	Frx,u,ϕ
	

	Transmit antenna element s field pattern in the direction of the spherical basis vector 
[image: image138.wmf]q

ˆ


	Ftx,s,θ
	

	Transmit antenna element s field pattern in the direction of the spherical basis vector 
[image: image139.wmf]f

ˆ


	Frx,s,ϕ
	


General parameters:

Step 1: Set environment, network layout, and antenna array parameters

a)
Choose one of the scenarios (3D-UMa, 3D-UMi). Choose a global coordinate system and define zenith angle θ, azimuth angle ϕ, and spherical basis vectors 
[image: image140.wmf]q

ˆ

, 
[image: image141.wmf]f

ˆ

 as shown in Figure 7.3-2.

b)
Give number of BS and UT

c)
Give 3D locations of BS and UT, and LOS AOD (ϕLOS,AOD), LOS ZOD (θLOS,ZOD), LOS AOA (ϕLOS,AOA), LOS ZOA (θLOS,ZOA) of each BS and UT in the global coordinate system

d)
Give BS and UT antenna field patterns Frx and Ftx in the global coordinate system and array geometries

e)
Give BS and UT array orientations with respect to the global coordinate system. BS array orientation is defined by three angles ΩBS,α (BS bearing angle), ΩBS,β (BS downtilt angle) and ΩBS,γ (BS slant angle). UT array orientation is defined by three angles ΩUT,α (UT bearing angle), ΩUT,β (UT downtilt angle) and ΩUT,γ (UT slant angle).

f)
Give speed and direction of motion of UT in the global coordinate system

g)
Give system centre frequency

Large scale parameters:

Step 2: Assign propagation condition (LOS/NLOS) according to Table 7.2-2.

Step 3: Calculate pathloss with formulas of Table 7.2-1 for each BS-UT link to be modelled.

Step 4: Generate large scale parameters e.g. delay spread, angular spreads, Ricean K factor and shadow fading taking into account cross correlation according to Table 7.3-6 and using the procedure described in section 3.3.1 of [16] with the square root matrix
[image: image142.wmf])
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MxM
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being generated using the Cholesky decomposition and the following order of the large scale parameter vector: sM = [sSF, sK, sDS, sASD, sASA, sZSD, sZSA]T. Limit random RMS azimuth arrival and azimuth departure spread values to 104 degrees, i.e., ASA  = min(ASA ,104(), ASD  = min(ASD ,104(). Limit random RMS zenith arrival and zenith departure spread values to 52 degrees, i.e., ZSA  = min(ZSA ,52(), ZSD  = min(ZSD ,52(). 
Small scale parameters:

Step 5: Generate delays 
Delays are drawn randomly from the delay distribution defined in Table 7.3-6. With exponential delay distribution calculate
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Where r is the delay distribution proportionality factor, Xn ~ uniform(0,1), and cluster index n = 1,…,N. With uniform delay distribution the delay values n’ are drawn from the corresponding range. Normalise the delays by subtracting the minimum delay and sort the normalised delays to ascending order:
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In the case of LOS condition, additional scaling of delays is required to compensate for the effect of LOS peak addition to the delay spread. The heuristically determined Ricean K-factor dependent scaling constant is
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where K [dB] is the Ricean K-factor defined in Table 7.3-6. The scaled delays
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are not to be used in cluster power generation.

Step 6: Generate cluster powers P.

Cluster powers are calculated assuming a single slope exponential power delay profile. Power assignment depends on the delay distribution defined in Table 7.3-1. With exponential delay distribution the cluster powers are determined by
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(7.3-5)
where n ~ N(0,) is the per cluster shadowing term in [dB]. Average the power so that the sum power of all cluster powers is equal to one, i.e., 
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In the case of LoS condition an additional specular component is added to the first cluster. Power of the single LoS ray is:
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(7.3-7)
and the cluster powers are not as in equation (7.3-6), but:
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(7.3-8)
where ((.) is Dirac’s delta function and KR is the Ricean K-factor defined in Table 7.3-6 converted to linear scale. These power values are used only in equations (7.3-9) and (7.3-14), but not in equation (7.3-22).

Assign the power of each ray within a cluster as Pn / M, where M is the number of rays per cluster.

Remove clusters with less than -25 dB power compared to the maximum cluster power. The scaling factors need not be changed after cluster elimination.

Step 7: Generate arrival angles and departure angles for both azimuth and elevation.

The composite PAS in azimuth of all clusters is modelled as wrapped Gaussian (see Table 7.3-6). The AOAs are determined by applying the inverse Gaussian function (7.3-9) with input parameters Pn and RMS angle spread ASA
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In equation (7.3-9) the constant C is a scaling factor related to the total number of clusters and is given in Table 7.3-2:

Table 7.3-2: Scaling factors for AOA, AOD generation
	# clusters
	4
	5
	8
	10
	11
	12
	14
	15
	16
	19
	20

	C
	0.779
	0.860
	1.018
	1.090
	1.123
	1.146
	1.190
	1.211
	1.226
	1.273
	1.289


In the LOS case, constant C is dependent also on the Ricean K-factor. Constant C in (7.3-9) is substituted by CLOS. Additional scaling of the angles is required to compensate for the effect of LOS peak addition to the angle spread. The heuristically determined Ricean K-factor dependent scaling constant is 



[image: image152.wmf](

)

3

2

0001

.

0

002

.

0

028

.

0

1035

.

1

K

K

K

C

C

LOS

+

-

-

×

=

,
(7.3-10)
where K [dB] is the Ricean K-factor defined in Table 7.3-6.

Assign positive or negative sign to the angles by multiplying with a random variable Xn with uniform distribution to the discrete set of {1,–1}, and add component 
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 to introduce random variation
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where ϕLOS,AOA is the LOS direction defined in the network layout description, see Step1c.

In the LOS case, substitute (7.3-11) by (7.3-12) to enforce the first cluster to the LOS direction ϕLOS, AOA 
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Finally add offset angles m from Table 7.3-3 to the cluster angles
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where cAoA is the cluster-wise rms azimuth spread of arrival angles (cluster ASA) in Table 7.3-6.

Table 7.3-3: Ray offset angles within a cluster, given for 1 rms angle spread
	Ray number m
	Basis vector of offset angles m

	1,2
	± 0.0447

	3,4
	± 0.1413

	5,6
	± 0.2492

	7,8
	± 0.3715

	9,10
	± 0.5129

	11,12
	± 0.6797

	13,14
	± 0.8844

	15,16
	± 1.1481

	17,18
	± 1.5195

	19,20
	± 2.1551


The generation of AOD ((n,m,AOD) follows a procedure similar to AOA as described above.

The generation of ZOA assumes that the composite PAS in the zenith dimension of all clusters is Laplacian (see Table 7.3-6). The ZOAs are determined by applying the inverse Laplacian function (7.3-14) with input parameters Pn and RMS angle spread σZSA
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In equation (7.3-14) the constant C is a scaling factor related to the total number of clusters and is given in Table 7.3-4:

Table 7.3-4: Scaling factors for ZOA, ZOD generation

	# clusters
	12
	19
	20

	C
	1.104
	1.184
	1.178


In the LOS case, constant C in (7.3-14) is substituted by CLOS given by:
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where K [dB] is the Ricean K-factor defined in Table 7.3-6.

Assign positive or negative sign to the angles by multiplying with a random variable Xn with uniform distribution to the discrete set of {1,–1}, and add component 
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where 
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if the UT is located outdoors. The LOS direction is defined in the network layout description, see Step1c.

In the LOS case, substitute (7.3-16) by (7.3-17) to enforce the first cluster to the LOS direction θLOS,ZOA 
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Finally add offset angles m from Table 7.3-3 to the cluster angles
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where cZOA is the cluster-wise rms spread of ZOA (cluster ZOA) in Table 7.3-6. Assuming that 
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The generation of ZOD follows the same procedure as ZOA described above except equation (7.3-16) is replaced by
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where variable Xn is with uniform distribution to the discrete set of {1,–1}, 
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is given in Tables 7.3-7, 7.3-8 and equation (7.3-18) is replaced by 
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where 
[image: image173.wmf]ZSD

m

is the mean of the ZSD log-normal distribution. 

In the LOS case, the generation of ZOD follows the same procedure as ZOA described above using equation (7.3-17).

Step 8: Coupling of rays within a cluster for both azimuth and elevation

Couple randomly AOD angles (n,m,AOD to AOA angles (n,m,AOA within a cluster n, or within a sub-cluster in the case of two strongest clusters (see Step 11 and Table 7.3-3). Couple randomly ZOD angles 
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using the same procedure. Couple randomly AOD angles (n,m,AOD with ZOD angles 
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within a cluster n or within a sub-cluster in the case of two strongest clusters.

Step 9: Generate XPRs

Generate the cross polarization power ratios (XPR) for each ray m of each cluster n. XPR is log-Normal distributed. Draw XPR values as
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where  X ~ N() is Gaussian distributed with and from Table 7.3-6 

Coefficient generation:

Step 10: Draw initial random phases

Draw random initial phase 
[image: image178.wmf]{
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 for each ray m of each cluster n and for four different polarisation combinations (θθ, θϕ, ϕθ, ϕϕ). The distribution for initial phases is uniform within (-).

In the LOS case, draw also a random initial phase 
[image: image179.wmf]LOS

F

 for both θθ and ϕϕ polarisations.
Step 11: Generate channel coefficients for each cluster n and each receiver and transmitter element pair u, s.

For the N – 2 weakest clusters, say n = 3, 4,…, N, the channel coefficients are given by:
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(7.3-22)
where Frx,u,θ and Frx,u,ϕ are the receive antenna element u field patterns in the direction of the spherical basis vectors, 
[image: image181.wmf]q
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 and 
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ˆ

 respectively, Ftx,s,θ and Ftx,s,ϕ are the transmit antenna element s field patterns in the direction of the spherical basis vectors, 
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 and 
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 respectively. 
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 is the spherical unit vector with azimuth arrival angle ϕn,m,AOA and elevation arrival angle θn,m,ZOA, given by 
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where n denotes a cluster and m denotes a ray within cluster n. 
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 is the spherical unit vector with azimuth departure angle ϕn,m,AOD and elevation departure angle θn,m,ZOD, given by
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where n denotes a cluster and m denotes a ray within cluster n. Also, 
[image: image189.wmf]u
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is the location vector of receive antenna element u and 
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d

,

is the location vector of transmit antenna element s, n,m is the cross polarisation power ratio in linear scale, and 0 is the wavelength of the carrier frequency. If polarisation is not considered, the 2x2 polarisation matrix can be replaced by the scalar 
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 and only vertically polarised field patterns are applied.

The Doppler frequency component vn,m is calculated from the arrival angles (AOA, ZOA), UT velocity vector 
[image: image192.wmf]v

with speed v, travel azimuth angle ϕv, elevation angle θv and is given by 
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For the two strongest clusters, say n = 1 and 2, rays are spread in delay to three sub-clusters (per cluster), with fixed delay offset {0,5,10 ns} (see Table 7.3-2). The delays of the sub-clusters are
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(7.3-26)
Twenty rays of a cluster are mapped to sub-clusters as presented in Table 7.3-5 below. The corresponding offset angles are taken from Table 7.3-3 with mapping of Table 7.3-5.

Table 7.3-5: Sub-cluster information for intra cluster delay spread clusters

	sub-cluster #
	mapping to rays
	power
	delay offset

	1
	1,2,3,4,5,6,7,8,19,20
	10/20
	0 ns

	2
	9,10,11,12,17,18
	6/20
	5 ns

	3
	13,14,15,16
	4/20
	10 ns


In the LOS case, define 
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 and determine the channel coefficients by adding a single line-of-sight ray and scaling down the other channel coefficients generated by (7.3-22). The channel coefficients are given by:
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where (.) is the Dirac’s delta function and KR is the Ricean K-factor defined in Table 7.3-6 converted to linear scale.

Step 12: Apply pathloss and shadowing for the channel coefficients.

Unaffected text was omitted

8.1
RSRP calculation formula

For channel model calibration and baseline performance evaluation, the following RSRP calculation formula for Tx antenna port p needed for UE attachment is used (applying KR = 0 for NLOS UE). Note that the TX power is CRS transmitted power per RE. The notation below is according to equation (7.3-22). 
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(s=1, …, S) represents a complex weight vector used for virtualization of port p and U is the number of receive antenna elements.  
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where for NLOS path for n=1, …, N,
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(8.1-2)

and for LOS path 
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(8.1-3)

with
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(8.1-4)

and
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(8.1-5)
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