
3GPP TSG-RAN WG5 Testing
R5s150868
01 Jan – 31 Dec 2015
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	34.229-3
	CR
	0349
	rev
	-
	Current version:
	11.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Corrections to IMS Emergency call Testcase 19.1.3

	
	

	Source to WG:
	Anite

	Source to TSG:
	R5

	
	

	Work item code:
	TEI9_Test
	
	Date:
	2015-09-28

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-11

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	1) Following implementation of prose CR R5-153988, the PDN disconnect procedure was added in parallel with Extnded Service Request procedure. This consists of reciving PDN DISCONNECT REQUEST followed by EPS bearer context deacitvation procedure.

According to 23.401 4.2:

4.2 Linkage between the protocols for EPS mobility management and EPS session management
…

Except for the attach procedure, during EMM procedures the UE shall suspend the transmission of ESM messages.

This implies that the UE may not send DEACTIVATE EPS BEARER CONTEXT ACCEPT during an ongoing Extended Service Request procedure.
2) It is possible that on redirection to UTRAN or GERAN, a UE which is only supporting IMS over EUTRAN can de-register from IMS before switching RAT. In the current TTCN implementation this behaviour can cause a failure as pAccessNetworkInfo header is expected as “UTRAN-FDD” in the de-register message.

	
	

	Summary of change:
	1) Removed the EPS bearer context deacitvation procedure at steps at 8Aa0a2 and 8Aa0a3.It is considered sufficient to handle receiving a PDN DISCONNECT REQUEST from the UE at this point, without proceeding with the EPS bearer deactivation procedure. Note a prose CR associated with this change will be raised at RAN5#69.
2) RAT type set to OMIT in this test case, which means the pAccessNetworkInfo field will not be checked at all, so the de-register message would be accepted whether it comes over EUTRAN (on redirection to other RAT) or UTRAN (on switch off at the end of the test case)

	
	

	Consequences if not approved:
	A conformant UE may fail the test case

	
	

	Clauses affected:
	19.1.3

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	x
	
	 Test specifications
	TS/TR …34.229-1

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Change 1
	Function name
	function fl_TC_19_1_3_Steps8to9b4

	Reason for change
	Following implementation of prose CR R5-153988, the PDN disconnect procedure was added in parallel with Extnded Service Request procedure. This consists of reciving PDN DISCONNECT REQUEST followed by EPS bearer context deacitvation procedure.

According to 23.401 4.2:

4.2 Linkage between the protocols for EPS mobility management and EPS session management
…

Except for the attach procedure, during EMM procedures the UE shall suspend the transmission of ESM messages.

This implies that the UE may not send DEACTIVATE EPS BEARER CONTEXT ACCEPT during an ongoing Extended Service Request procedure.

	Summary of change
	Removed the EPS bearer context deacitvation procedure at steps at 8Aa0a2 and 8Aa0a3.It is considered sufficient to handle receiving a PDN DISCONNECT REQUEST from the UE at this point, without proceeding with the EPS bearer deactivation procedure. Note: a prose CR associated with this change will be raised at RAN5#69.

	TTCN module
	IMS_IRAT_19_EUTRA.ttcn

	MCC160 Comment
	

Before change

 function fl_TC_19_1_3_Steps8to9b4(IRAT_CoOrd_SysInfo_Type p_SysInfo,

 integer p_PDN) runs on EUTRA_PTC

 { /* @sic R5-153988 sic@ */

….

….
 alt { // @sic R5-145792 sic@

 [] SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA, // @sic R5s140788 sic@

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_EXT_SERVICE_REQUEST_Common(f_EUTRA_SecurityKSIasme_Get(),

 tsc_EST_CsFallback_EC,

 bit2oct(v_GutiParams.M_TMSI),

 omit))))

 {

 v_EsrReceived := true;

 if (v_PdnDiscReceived) {

 t_Wait.stop;

 v_TimerExpired := true;

 }

 if ((not v_AckReceived) or (not v_TimerExpired)) {

 repeat;

 }

 }

 [] t_Wait.timeout // CS fallback is not developed: ESR is not received.

 {

 if (not v_AckReceived) {

 v_TimerExpired := true;

 repeat;

 }

 }

 [] IMS[p_PDN].receive(cmr_IMS_IPCAN_Trigger) // Receive Trigger indicating receipt of ACK in parallel with EXTENDED SERVICE REQUEST

 {

 v_AckReceived := true;

 if(not v_TimerExpired) {

 repeat; // In case not ESR received and not timeout, then repeat until one of these conditions is satisfied.

 }

 }

 [] SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA, // @sic R5-153988 sic@

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_PDNDisconnectReq(v_LinkedEpsBearerId)))) -> value v_ReceivedAsp

 {

 v_NasInd := v_ReceivedAsp.Signalling.Nas[0];

 v_PDNDiscReq := v_NasInd.Pdu.Msg.pDN_DISCONNECT_REQUEST;

 v_EpsTi := v_PDNDiscReq.procedureTransactionIdentifier;

 // The SS transmits a DEACTIVATE EPS BEARER CONTEXT REQUEST

 //@siclog "Step 8Aa0a2" siclog@

 v_EsmCause := cs_ESM_Cause_v ('00100100'B); // #36 regular deactivation

 SRB.send(cas_SRB1_RrcNasPdu_REQ(eutra_CellA,

 cs_TimingInfo_Now,

 cs_RRCConnectionReconfiguration_DRB_Release (tsc_RRC_TI_Def, tsc_DRB2),

 cs_NAS_Request(tsc_SHT_IntegrityProtected_Ciphered,

 cs_508_DeactivateEPSBearerCxtReq(v_EpsBearerId2,

 v_EpsTi,

 v_EsmCause))));

 // receive RRCConnectionReconfigurationComplete

 SRB.receive(car_SRB1_RrcPdu_IND(eutra_CellA,

 cr_508_RRCConnectionReconfigurationComplete(tsc_RRC_TI_Def)));

 // In the unlikely case Extended Service Request is received between after DeactivateEPSBearerCxtReq and before DeactivateEPSBearerCxtAccept TC will fail.

 // To be consider if it happens.

 // Check: Does the UE transmit a DEACTIVATE EPS BEARER CONTEXT ACCEPT?

 //@siclog "Step 8Aa0a3" siclog@

 SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA,

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_DeactivateEPSBearerCxtAccept(v_EpsBearerId2,

 tsc_PTI_Unassigned))));
 v_PdnDiscReceived := true;

 if (v_EsrReceived) {

 t_Wait.stop;

 v_TimerExpired := true;

 }

 if ((not v_AckReceived) or (not v_TimerExpired)) {

 repeat;

 }

 }

 }

….

….
 }
After change

 function fl_TC_19_1_3_Steps8to9b4(IRAT_CoOrd_SysInfo_Type p_SysInfo,

 integer p_PDN) runs on EUTRA_PTC

 { /* @sic R5-153988 sic@ */

…..

…..
 alt { // @sic R5-145792 sic@

 [] SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA, // @sic R5s140788 sic@

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_EXT_SERVICE_REQUEST_Common(f_EUTRA_SecurityKSIasme_Get(),

 tsc_EST_CsFallback_EC,

 bit2oct(v_GutiParams.M_TMSI),

 omit))))

 {

 v_EsrReceived := true;

 if (v_PdnDiscReceived) {

 t_Wait.stop;

 v_TimerExpired := true;

 }

 if ((not v_AckReceived) or (not v_TimerExpired)) {

 repeat;

 }

 }

 [] t_Wait.timeout // CS fallback is not developed: ESR is not received.

 {

 if (not v_AckReceived) {

 v_TimerExpired := true;

 repeat;

 }

 }

 [] IMS[p_PDN].receive(cmr_IMS_IPCAN_Trigger) // Receive Trigger indicating receipt of ACK in parallel with EXTENDED SERVICE REQUEST

 {

 v_AckReceived := true;

 if(not v_TimerExpired) {

 repeat; // In case not ESR received and not timeout, then repeat until one of these conditions is satisfied.

 }

 }

 [] SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA, // @sic R5-153988 sic@

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_PDNDisconnectReq(v_LinkedEpsBearerId)))) -> value v_ReceivedAsp

 {

 /*REMOVED v_NasInd := v_ReceivedAsp.Signalling.Nas[0];

 v_PDNDiscReq := v_NasInd.Pdu.Msg.pDN_DISCONNECT_REQUEST;

 v_EpsTi := v_PDNDiscReq.procedureTransactionIdentifier;

 // The SS transmits a DEACTIVATE EPS BEARER CONTEXT REQUEST

 //@siclog "Step 8Aa0a2" siclog@

 v_EsmCause := cs_ESM_Cause_v ('00100100'B); // #36 regular deactivation

 SRB.send(cas_SRB1_RrcNasPdu_REQ(eutra_CellA,

 cs_TimingInfo_Now,

 cs_RRCConnectionReconfiguration_DRB_Release (tsc_RRC_TI_Def, tsc_DRB2),

 cs_NAS_Request(tsc_SHT_IntegrityProtected_Ciphered,

 cs_508_DeactivateEPSBearerCxtReq(v_EpsBearerId2,

 v_EpsTi,

 v_EsmCause))));

 // receive RRCConnectionReconfigurationComplete

 SRB.receive(car_SRB1_RrcPdu_IND(eutra_CellA,

 cr_508_RRCConnectionReconfigurationComplete(tsc_RRC_TI_Def)));

 // In the unlikely case Extended Service Request is received between after DeactivateEPSBearerCxtReq and before DeactivateEPSBearerCxtAccept TC will fail.

 // To be consider if it happens.

 // Check: Does the UE transmit a DEACTIVATE EPS BEARER CONTEXT ACCEPT?

 //@siclog "Step 8Aa0a3" siclog@

 SRB.receive(car_SRB2_NasPdu_IND(eutra_CellA,

 cr_NAS_Indication(tsc_SHT_IntegrityProtected_Ciphered,

 cr_DeactivateEPSBearerCxtAccept(v_EpsBearerId2,

 tsc_PTI_Unassigned))));

 */
 v_PdnDiscReceived := true;

 if (v_EsrReceived) {

 t_Wait.stop;

 v_TimerExpired := true;

 }

 if ((not v_AckReceived) or (not v_TimerExpired)) {

 repeat;

 }

 }

 }

….

….
 }
Change 2
	Function name
	function f_TC_19_1_3_IMS1

	Reason for change
	It is possible that on redirection to UTRAN or GERAN, a UE which is only supporting IMS over EUTRAN can de-register from IMS before switching RAT. In the current TTCN implementation this behaviour can cause a failure as pAccessNetworkInfo header is expected as “UTRAN-FDD” in the de-register message.

	Summary of change
	RAT type set to OMIT in this test case, which means the pAccessNetworkInfo field will not be checked at all, so the de-register message would be accepted whether it comes over EUTRAN (on redirection to other RAT) or UTRAN (on switch off at the end of the test case)

	TTCN module
	IMS_IRAT_19_IMS.ttcn

	MCC160 Comment
	

Before change

	 function f_TC_19_1_3_IMS1() runs on IMS_PTC

 { /* Emergency call with emergency registration / Abnormal case / IM CN sends a 380 / UE performs emergency call via CS domain */

 f_IMS_PTC_Init();

 f_IMS_DefaultHandler_InitialRegistration();

 select (px_RATComb_Tested) {

 case (EUTRA_UTRA) {

 f_IMS_PTC_SetRanType(UTRAN_FDD);
 f_IMS_IpcanReleaseWithOptionalDeregistrationOtherIPCAN();

 }

 case (EUTRA_GERAN) {

 /* do nothing as IMS is not supported for GERAN:

 as PS and CS are not needed simultanously the PDP context status in the RAU accept can be set to inactive what should prevent any further IMS signalling */

 }

 }

 }

After change
	 function f_TC_19_1_3_IMS1() runs on IMS_PTC

 { /* Emergency call with emergency registration / Abnormal case / IM CN sends a 380 / UE performs emergency call via CS domain */

 f_IMS_PTC_Init();

 f_IMS_DefaultHandler_InitialRegistration();

 select (px_RATComb_Tested) {

 case (EUTRA_UTRA) {

 f_IMS_PTC_SetRanType(omit);

 f_IMS_IpcanReleaseWithOptionalDeregistrationOtherIPCAN();

 }

 case (EUTRA_GERAN) {

 /* do nothing as IMS is not supported for GERAN:

 as PS and CS are not needed simultanously the PDP context status in the RAU accept can be set to inactive what should prevent any further IMS signalling */

 }

 }

 }

