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1 Introduction

Packet losses between the SGSN and NSE can occur for various reasons.  Some are packet losses created by buffer purging during cell reselection, buffer overflow, corruption (e.g., CRC faults) on the Gb link, and so forth.  The “Improved Gb Forwarding” concept [1] is designed to address these issues by building a distributed database in the SGSN and NSE;  this database is used to recover lost packets.  This concept does not address packets lost during radio transmission.  By not relying on upper layer protocols to recover lost packets, performance is improved, the user is not charged for packets that are never delivered and for retransmitted packets.

The balance of this paper is as follows:

1. A simulation model showing the performance influence of packet losses and the influence of “Improved Gb Forwarding” is presented;  the presentation includes all assumptions that were used in this model.

2. The findings are then discussed.  The reader will see that “Improved Gb Forwarding” permits high throughput in the presence of packet losses.

3. A concluding section presenting the major findings is given.

2 Simulation of Packet Losses

In this section a simulation model having periodic packet losses is presented.  We chose to use an FTP session since this is fairly simple to model and since this function appears to be similar to that used in higher speed connections.

2.1 Modelling Assumptions

The purpose of the model is to evaluate the effectiveness of lost packet recovery using “Improved Gb Forwarding.”  The purpose is not to evaluate the actual system throughput;  this would require detailed simulation of the air interface, interference, and so forth.

The following assumptions are made:

· Sustained TCP (e.g., very long file transfer);  model approximates “Reno” version.  1500 byte packets are used.  Round-trip times are computed via time stamped packets.

· Inter-NSE cell reselection every 60 seconds (other times could have been selected – this figure is believed representative of inter-NSE inter-cell reselection time).

· Two downlink timeslots, each with CS2 encoding;  one uplink timeslot.

· Mean Internet delay is 100 mS (typical of mean backbone delay).

· Approximately 40 mS processing time in MS.

· Server modelled as interrupt-driven multi-priority operating system based with CPU times representative of real moderate-capacity systems.

· The cell reselection process is modelled as either a transmission stall in the NSE with packet losses (in the event packets are not recovered) or a data transmission stall (in the event packets are recovered).

· Processing times in the SGSN, NSE, and other network components are assumed to be negligible;  adding these delays would decrease the throughput.

The cell reselection model is designed to reflect what the TCP flow would see.  This model consists of the per-MS buffer and a channel whose capacity is  equal to the number of timeslots multiplied by the encoding rate;  during reselection, this model introduces a transmission stall time (the reselection time) and, optionally, can purge the per-MS buffer.  The former corresponds to the signalling and packet recovery operation during cell reselection whereas the latter occurs if packet recovery is not present.

3 Simulations

In this section we discuss the effects of SYNC-based local packet recovery.  The simulations are for persistent TCP transfers;  we conclude the section with comments about real-time traffic.

Figures 1 and 2 show the influence of buffer purging during cell reselection on the sustained throughput and retransmission timer value.
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Figure 1: System Throughput vs. Cell Reselection Time and TCP Window Size
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Figure 2: Retransmission Timeout – Packets Dropped During Cell Reselection

The important items to note are that system throughput are low (and varies with cell reselection time and TCP window size) and that the retransmission timeout (RTO) value has maximized to the pre-programmed upper bound (90 seconds).  The latter is important because it shows that packet recovery based on TCP’s retransmission timeout will be a very slow process.  The large RTO value is due to loss of time stamped packets.

Not shown in the plots is the extensive zero-window probing.  This occurs when the transmission window is closed for an extended period – TCP generates a packet with the intent of determining whether acknowledgments are lost, the destination is free, and so forth.

Figures 3 and 4 show the improvement with packets recovered.  The recovery is modelled as a stall in the transmission process.
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Figure 3: System Throughput With Lost Packets Locally Recovered
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Figure 4: Retransmission Timeouts With Lost Packets Locally Recovered

The primary observations are that throughput is substantially higher, the throughput sensitivity to window size is reduced, and that average RTO value (shown in red in Figure 4) is about 25 seconds.  The large fluctuation in the RTO value is due to path delay variance
.  There is also a reduction in retransmitted packets, substantially reduced zero-window probing.

3.1 Comments on Real-Time Traffic

We looked at TCP since TCP-based services are ubiquitous in the Internet.  The SYNC-based local packet recovery is also useful in real-time services, such as streaming audio.

The main advantage of the local recovery to such services is that upper-layer protocols are not involved in lost packet recovery.  Since many of these protocols infer network congestion from lost packets or excessively delayed packets, they will reduce the encoding rate because of packet losses.  This results in playback signal degradation, replaying of synthesis packets stored in jitter buffers (for instance, this results in an “echo-like” playback for streaming audio).  The local packet recovery reduces packet losses and perceived delay, thus improving real-time services performance.

To see how a service that does not use upper layer protocols to recover packets and relies on UDP would operate in a packet-loss environment such as discussed above, we modelled a UDP flow for 1000 seconds.  The mean offered load was 50 packets/second, with each packet being 60 bytes long.  Each packet received a unique strictly increasing sequence number.  During the simulation, the simulation recorded the sequence number received at the MS in the packet loss case and in the local packet recovery case.  Application layer protocol operation was not modelled, as the findings would depend on the application.  Figure 5 shows the results.  The reader can see that the proposed procedure recovers a substantial number of packets without relying on the intervention of the application layer.  Furthermore, the packet reordering is not present – the lost packets are recovered in the order they were originally transmitted.  The number of packets dropped, and recovered, will depend on the application, the traffic burstiness, flow control operation, and so forth.

3.2 Synchronization Buffer Sizing

The synchronization buffer’s size depends on the frequency of generation of the SYNC message:  the more often SYNC is generated, the lower this database’s size has to be.  Since the synchronization buffer stores copies of packets that have been transmitted by the SGSN, its size will be lower than that of the per-MS buffer in the SGSN.  We show an example of estimating the synchronization buffer’s size.

Assume the GPRS network will support MSs with four downlink timeslots, each running, at most CS4 encoding, and that SYNC is generated from a timer firing once per second.  CS4 encoding provides 21.4 Kbps peak transmission rate for a timeslot.  Thus, the total network peak transmission rate is 21.4 Kbps ( 4 = 85.6 Kbps.  If SYNC is generated once per second, the synchronization buffer will have to store, at least, 85.6/8 = 10.7 Kbytes of data.  It is plausible that, because of traffic burstiness, flow control operation, propagation delays, and so forth, the SGSN may transmit more than 10.7 Kbytes of data per second for a short time.  The synchronization buffer will therefore have to be slightly increased in size above 10.7Kbytes.
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Figure 5:UDP Packet Sequence Numbers With Lost and Locally Recovered Packets

4 Conclusions

This document present simulation results showing the network-level performance advantage obtained by local lost packet recovery from the SGSN’s synchronization buffer.  Although we looked only at inter-NSE cell reselection induced packet losses, the procedure can be used to locally recover packets for other losses.  The local recovery provides advantages not only for non-real-time traffic (such as TCP-based) but also for real-time traffic (such as streaming audio).
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� Retransmission timeout computation take into account measured or estimated round-trip time and absolute deviation in the measurements.  A path with low mean round-trip time but large delay fluctuations will cause the retransmission timeout value to be large.  This is what is seen in Figure 4.
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