3GPP TS ab.cde V0.1.0 (2006-10)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network & Terminals;

UICC-Terminal interface;

Characteristics of the Multi-protocol interface (MPI)

(Release 7)

[image: image1.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

smart card
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2006, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).

All rights reserved.

Contents

5Foreword

1
Scope
6
2
References
6
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
7
3.4
Coding conventions
7
4
Interface characteristics
7
4.1
Character frame
8
4.2
Data transfer scheme
8
4.2.1
Protocol identifier and control codes
8
4.2.1.1
Protocol identifier
9
4.2.2
Start bit detection
9
4.2.3
End of data block indication
9
4.2.4
Physical Interface timing
10
4.2.5
Reservation and release of the data line
10
4.2.5.1
EOB Guard time
11
4.3
Activation of Multi-protocol interface
12
4.3.1
Contact allocation
12
4.3.2
Interface speed indication
13
4.4
Clock stop mode
13
5
Multi-protocol interface
13
6
Control codes
13
6.1
Polling
14
6.2
Supported protocols
15
7
T=11 APDU transport protocol
15
7.1
T=11 protocol structure
15
7.1.1
Prologue field
16
7.1.2
Information field
16
7.1.2.1
Information field size
16
7.1.3
Epilogue field
16
7.2
Character and block timing
16
7.2.1
Character Guard and Waiting time
16
7.2.2
Block Waiting time
16
7.2.3
Block guard time
17
7.3
Proactive command pending indication as answer to polling
17
8
USB data packet transfer
17
8.1
USB interface characteristics mapping
17
8.1.1
USB data coding
18
8.1.2
USB Suspend and resume
18
8.2
Mapping of USB packets on the multi-protocol interface
18
9
Ethernet frame transfer
19
9.1
Ethernet frame mapping
19
10
Mass Storage Block Transfer
20
10.1
Mass Storage frame mapping
20
10.1.1
Error detection
21
10.1.2
Error response
21
10.1.2
Capacity
22
10.1.3
Payload block length.
22
10.1.4
Read block
23
10.1.5
Write block
23
Annex A (informative): Change history
24

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.

1
Scope
The present document specifies an interface between a terminal and a UICC for high speed communication. The characteristics of the interface specified in the present document is that it can support multi protocol data transfers interleaved.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TS 31.101 "UICC-Terminal interface; Physical and logical characteristics"

[2]
Universal Serial Bus Specification Revision 2.0, USB Implementers Forum Available at http://www.usb.org/developers/docs
[3]
IEEE Std 802.3 "Information technology—Telecommunications and information exchange between systems—Local and metropolitan area networks—Specific requirements—Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications"

[4]
3GPP TR 21.905 "Vocabulary for 3GPP Specifications"
[5]
ITU-T Recommendation V.41: "CODE-INDEPENDENT ERROR-CONTROL SYSTEM".
3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [4] and the following apply. A term defined in the present document takes precedence over the definition of the same term, if any, in TR 21.905 [4].
Frame: Starting with the initial PI or the first PI after a previous EOF and ending with an EOF containing a maximum of 1500 bytes.

Multi-protocol interface: A synchronous interface for high speed data communication, allowing the transfer of data using several different protocol identified by a protocol identifier.
type 1 UICC: UICC which always enters the negotiable mode after a warm reset
type 2 UICC: UICC which always enters the specific mode after a warm reset
3.2
Symbols

For the purposes of the present document, the following symbols apply:

<symbol>
<Explanation>

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [4] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [4].
BGT
Block Guard Time

BWI
Block Waiting Integer

BWT
Block Waiting Time

CGT
Character Guard Time

CWT
Character Waiting Time

EOB
End Of Block

EOF
End Of Frame

EOP
End Of Packet

FCS
Frame Check Sequence

IFSC
Information Field Size for the UICC

IFSD
Information Field Size for the terminal

INF
INFormation field

IRP
I/O Request Packet

LSB
Least Significant Bit

MSB
Most Significant Bit

NAD
Node Address

NRZ-I
Non Return to Zero-Inverted

PCB
Protocol Control Byte

PI
Protocol Identifier

SOF
Start Of Frame

SYNC
USB SYNChronisation pattern

UICC
A physically secure device, an IC card (or 'smart card'), that can be inserted and removed from the terminal equipment. It may contain one or more applications. One of the applications may be a USIM
USB
Universal Serial Bus

3.4
Coding conventions

For the purposes of the present document, the following coding conventions apply:

· all lengths are presented in bytes, unless otherwise stated. Each byte is represented by bits b8 to b1, where b8 is the Most Significant Bit (MSB) and b1 is the Least Significant Bit (LSB). In each representation, the leftmost bit is the MSB.

4
Interface characteristics

The interface defined in the present document is able to transport data according to different protocols. The interface provides a protocol identifier, PI, at the start of each data block. Each data block ends with an end of block, EOB. The length of the block depends on what protocol is used in the data format. The physical interface sets no restrictions on the maximum block length. The block length of 1, only the protocol identifier followed by an EOB is used for specific signaling. The shortest block for transferring payload data is two characters.

[image: image2.emf]P

I

Payload data

Format according to PI

E

O

B

Figure 4.1 Data structure on the physical interface

The physical interface is based on a half duplex synchronous interface having a dedicated data line and a clock that controls the data on the data line. The receiver captures the data on the rising edge of the clock and the transmitter changes the state of the data on the falling edge of the clock. The interface is in idle when the data line is at high level and no clock is running that controls the data. The data clock is only running when there is active data transmission, i.e. the receiver will capture the state on the data line at each rising edge of the clock. The clock used for the data transfer is supplied by the terminal.

The terminal is always master and the UICC is always slave. All communication is initiated from the terminal and the UICC responds.
4.1
Character frame

Data on the interface is transferred as characters. Each character consists of a start bit and 8 data bits. A high level on the interface represents a logical '1' and a low level on the interface a logical '0'. The start bit is presented as a logical '0' on the interface. The data bits on the interface represents a byte where b8 represents the MSB and b1 the LSB. The data is sent on the interface with the LSB first.

[image: image3.emf]Start

B1

B8

CLK

DATA

Figure 4.2 Character frame

4.2
Data transfer scheme

The data transfer on the interface takes place as a set of consecutive characters, i.e. blocks. There is no bus idle time between the characters in a block, i.e. the MSB of the previous character is followed by the start bit of the next character at the following clock event. There is no fixed block length which means that the transfer of a block is completed when the interface goes to idle after the last character has been transmitted. The physical level of the data transfer does not contain any information about the amount of data contained in a block. The length of the data in a block can be retrieved based on the protocol used. The maximum block length is set by the protocol used in the data transfer. The physical level does not contain any error detection or recovery mechanisms. Any error detection and recovery mechanisms needed have to be incorporated in the next protocol level. The error detection and recovery mechanism is dependent on the protocol used, i.e. the protocol identifier.

[image: image4.emf]CLK

DATASPIData 1Data nSSSSS

Figure 4.3 Data block

4.2.1
Protocol identifier and control codes

If the first character in a block is followed by one or more data bytes the first character is interpreted as a protocol identifier. If the first character is not followed by one or more data bytes in accordance with the data transfer scheme but followed by an EOB indication this single byte of data is interpreted as a control code. If the single byte sent on the interface followed by an EOB corresponds to a defined PI the control code is related to that protocol. This means that only one specific control code can be defined for each protocol. The meaning of this control code, if used, is defined in the present document in the section where the protocol is described. In order be able to expand control functionality in the future a dedicated PI has been specified to transfer control related information between the terminal and the UICC. Additional single byte PIs can be defined if needed in order to provide control information related to the physical interface specified in the present document.
4.2.1.1
Protocol identifier

 The first character in each block not followed by an EOB indication contains the protocol identifier, PI. The protocol identifier contains the necessary information for the receiver in order to extract the rest of the information from the data block. A special protocol identifier has been defined for passing special control information between the terminal and the UICC. The following protocol identifiers have been defined.

Table 4.1 Coding of the protocol identifier

	Protocol Identifier (PI)
	Protocol used for the remaining data bytes in the block
	Remark

	'00'
	The data in the block is coded as T=1 APDUs as defined in TS 31.101 [1]
	

	'03'
	The data in the block is coded as defined in the USB 2.0 specification
	Single byte control code defined for USB EOF indication

	'05'
	The data in the block is coded as defined in section 10 of this specification.
	

	'AB'
	The data in the block is coded as defined in the IEEE 802.3 specification
	

	'FE'
	Control code. The data in the block is coded as defined in section 6 of this specification.
	

	'FF'
	RFU
	Reserved for possible extensions.

All other values for PI are RFU.

4.2.2
Start bit detection

The terminal starts the transmission by setting the data line low when the data clock is low and by starting the data clock. The UICC will capture the start bit at the first rising edge of the data clock.

The UICC starts the transmission, as a response to a command, by setting the data line low. The start bit is detected by the terminal which then starts the data clock and the start bit is captured by the terminal at the first rising edge of the data clock.

4.2.3
End of data block indication

The end of a data block, EOB, is indicated by a missing start bit. The terminal will after each character provide two additional clock cycles in order for the receiver to detect the end of block condition and release the data line if no more data is to be transmitted. The transmitter shall set the data line to idle state at the falling edge of the data clock after having transmitted the last data bit in the last byte. Upon detection of the idle condition the terminal stops the data clock within the next 3 clock cycles following the detection of the end of block condition (EOB) if a new start bit on the interface is not detected.

[image: image5.emf]EOB

Figure 4.4 End of Data Block indication

4.2.4
Physical Interface timing

The timing of the data transmission on the interface references the data clock. The transmitter changes state of the output data at the falling edge of the data clock and the receiver captures the data on the interface at the rising edge of the clock.

[image: image6.emf]Tclk

TsTh

CLK

DATA

Figure 4.5 Interface timing references

Table 4.3 Synchronous interface timings

	Symbol
	Minimum
	Maximum
	Unit
	

	Ts
	CLK on C6/4
	CLK on C6/2
	ns
	

	Th
	0
	CLK on C6/4
	ns
	

	NOTE: The value for Ts is calculated from the frequency indicated in the first TBi (i > 2) after T=15, i.e. 20 MHz corresponds to 12.5 ns

4.2.5
Reservation and release of the data line

The multi-protocol interface operates on a single wire in half duplex mode. When there is no data communication on the interface the data line is pulled up by a resistor, the resistor value may be large as the transmitter will drive the data line actively low and high during transmissions. The data line is considered released one clock cycle after the transmission of the EOB condition if no new start bit is detected or when the data clock is stopped.

[image: image7.emf]Tclk

Ts

CLK

DATA

Start bit

Released

Reserved

Figure 4.6 Bus reservation timing data clock stopped

[image: image8.emf]Tclk

Ts

CLK

DATA

Start bit

Released

Reserved

Figure 4.7 Bus reservation timing data clock running

In order to transmit data on the data line the entity that has been given the permission to transmit, UICC or terminal must reserve the data line. The data line is reserved by pulling the data line low at the falling edge of the data clock or if the data clock is stopped pull the data line low respecting the data setup time as defined in the present document. The data line is considered as reserved by the previous transmitter until two data clock cycles after the output of the EOB condition. The transmitter that has reserved the data line may keep the data line reserved by initiating a new block transmission on the data line immediately following the EOB condition. If the transmitter that has reserved the data line has no more data to transmit it shall release the data line one clock cycle after transmission of the EOB condition.

4.2.5.1
EOB Guard time

In order for the transmitter to properly transmit the EOB condition prior to releasing the data line and allow the data line to be reserved by another transmitter the EOB guard time has been defined. The EOB guard time is 1 data clock cycle. The EOB guard time also allows the transmitter currently having the data line reserved to initiate a new transmission immediately following the EOB condition. The entity that intends to respond, UICC, or send a new command, terminal, shall wait for the data line to be released in order to start transmitting. The entity receiving the data shall monitor the data line after the detection of the EOB condition in order to verify that it remains in idle during the next clock cycle before starting to transmit data. The terminal will provide two additional clock cycles after the EOB transmission before the clock is stopped, in case no new start condition is detected. This allows a minimum bus turn around time of 1 clock cycle as shown in figure 4.7.

[image: image9.emf]Tclk

Ts

CLK

DATA

EOB

Released

Reserved

Reserved

Start

Ts

T

EOBG

Figure 4.7 EOB guard timing when transmission direction is changed

4.3
Activation of Multi-protocol interface
The UICC indicates the support of the interface specified in the present document by indicating T=11, in TDi, in the ATR received on the TS 31.101 [1] interface. A terminal supporting the interface specified in the present document selects it by using the PPS procedure as defined in TS 31.101 [1].

[image: image10.wmf]

Cold Reset

(Type 1 UICC)

PPS procedure

Cold Reset

(Type 2 UICC)

 Warm Reset (Type 1 UICC)

Warm Reset (Type 1 UICC)

Warm Reset (Type 2 UICC)

Warm Reset (Type 2 UICC)

Specific

Mode

Start of a

card ses

sion

Negotiable

Mode

Figure 4.8: Activation of the UICC and reaction to resets. The multi-protocol interface is selected when the UICC has acknowledged the PPS request sent by the terminal accepting the values indicated in the PPS request
Once the multi-protocol interface is successfully selected, the terminal sends a 'Supported protocols' control message to the UICC with a list of the protocols supported by the terminal, and the UICC answers back with the subset of the protocols supported by the terminal which are also supported by the UICC. Both terminal and UICC shall support the T=11 protocol (PI='00') and the Control codes (PI='FE').
4.3.1
Contact allocation

The multi-protocol interface defined in the present document requires two contacts in order to operate. As the interface specified in TS 31.101 is not operating in parallel once the interface specified in the present document has been selected, the data line used by the multi-protocol interface is mapped to the same contact as the data line for the interface specified in TS 31.101 [1], (C7). The data clock required by the multi-protocol interface is allocated to contact C6 once the multi-protocol interface has been selected. The terminal shall keep the state of C6 prior to the protocol selection in the default state as defined in TS 31.101 [1]. After the successful protocol selection the terminal shall set C6 to it's low state prior to starting the communication. The UICC shall not interpret any activity on C6 as a data clock until the multi-protocol interface has been selected.

[image: image11]
Figure 4.9 Contact allocation for Multi-protocol interface

The multi-protocol interface is selected when the UICC has acknowledged the PPS request sent by the terminal accepting the values indicated in the PPS request. The terminal shall then initiate the next communication with the UICC using the multi-protocol interface. An unsuccessful PPS procedure does not change any of the communication parameters, as described in TS 31.101 [1].
4.3.2
Interface speed indication

The transfer speed of the interface defined in the present document is dependent on the clock frequency provided for the data clock. The maximum speed is limited by physical properties on the interface like load and allowed power consumption. Depending on the UICC and terminal capabilities the maximum speed of the interface may vary. In order to take different terminal and UICC requirements into account speed classes is introduced. The maximum speed that the UICC can support on this interface is indicated in the ATR in the first TBi (i > 2) after T=15 as defined in TS 31.101 [1]. The terminal shall according to it's capabilities indicate in the PPS procedure a speed that is either equal to or less than the speed indicated by the UICC in the first TBi (i > 2) after T=15. The PPS procedure is described in TS 31.101 [1]. The terminal shall if possible, i.e. if supported, select an interface speed in the range indicated by the UICC.
4.4
Clock stop mode

The UICC shall support the clock stop mode as defined in TS 31.101 [1]. The clock stop mode is used to reduce the power consumption of the UICC. The presence of the clock on C3 also indicates that the UICC may expect activity on the multi-protocol interface and it may exit the low power mode. The terminal shall active the clock on C6 as defined in TS 31.101 [1] before the communication is established on the interface described in the present document. The terminal shall maintain the clock on C3 active during the UICC command processing and response. Stopping the clock is performed as defined in TS 31.101 [1].

5
Multi-protocol interface

The interface specified in the present document is defined to be able to transport data using different protocols. The format of the data transferred is defined by the protocol identifier PI that is the first byte in the data transfer. Based on the value of PI the format of the data in the block can be identified by the receiver. The interface provides an end of block, EOB, detection as defined in section 4.2.4. After an EOB indication the next data transfer always starts with a protocol identifier. During normal data transfers the protocol identifier is followed by one or more data bytes. A single byte of data on the interface followed by an EOB indication is used to announce specific protocol related indications. An example of this type of information is the USB End Of Frame, EOF. Multi-protocol data is mapped on the interface as shown in the figure 5.1.

[image: image12.emf]P

I

:

A

P

D

U

APDU DAT

E

O

B

P

I

:

U

S

B

USB Packet

P

I

:

U

S

B

USB Packet

P

I

:

U

S

B

USB Packet

E

O

B

E

O

B

E

O

B

E

O

F

Figure 5.1 Mapping of different protocols on the interface

When the terminal transfers data using a specific protocol identifier, the UICC responds with a data transfer with the same protocol identifier. The only exception is when the terminal sends a Polling control sequence to the UICC; in this case, the UICC may respond with a message using any protocol identifier, provided that the corresponding protocol allows the UICC to initiate communication.
The multi-protocol interface does not, by itself, provide a reliable communication channel. There is no error handling done on the physical level of the multi-protocol interface. Error handling, including CRC checking and retransmission, is done according to the protocol which is transported on the multi-protocol interface, e.g. the T=11 protocol.
6
Control codes
One or more bytes following a Control code PI and followed by an EOB indication is to be interpreted by the receiver as a specific control code. A control code is used for specific indications or to cause the receiver to do specific actions.

[image: image13]
Figure 6.1 Format for Control code block

The CRC field contains a 2 byte CRC that is used for detecting possible errors in the data transmission. The CRC generation polynomial, defined in ITU-T V.41 [5], is:

G(x) = x16+x12+x5+1

The following control codes have been defined.

Table 6.1 Coding of the control codes

	Control Code value
	Control code meaning
	Remark

	'01'
	Polling
	Sent by the terminal to allow the UICC to send data. If the UICC has no data to send, it responds with the identical message, Control code PI followed by the Polling control code.

	'02'
	Supported protocols
	Sent by the terminal to indicate the protocol identifiers supported by the terminal. The UICC responds with the identical message indicating those of the protocol identifiers supported by the terminal that are also supported by the UICC.

	'03'
	Protocol not supported
	Sent as response to a data block preceded by an unsupported PI

	'04'
	Control code not supported
	Sent as response to a control code block with an unknown or unsupported control code.

	'05'
	Control not performed
	Sent as response to a control code block where the control code is understood and supported, but the requested command could not be performed; e.g. because the command data was not understood.

	'06'
	CRC error
	Sent as response if the CRC indicates corruption of the data sent.

	'FF'
	This control code shall be ignored by the receiver
	

The control code value '04' "Control code not supported" is defined in order to allow the possibility of future extensions to the set of control codes. It is mandatory to support the control codes '01' to '06'.

In case of CRC errors, the sending entity shall resend the data. In the case where the CRC error persists also on the resent data, the sending entity shall retry the sending at least three times.

In the following sections, the format of control code blocks which includes payload data are described. Control code blocks without payload data follow the format shown in figure 6.1.
6.1
Polling
The terminal sends this message to allow the UICC to send data. The UICC can respond with a Protocol Identifier followed by data.

If the UICC does not have any data to send, it responds with the Control Code PI followed by the Polling control code.

Table 6.4 Polling response, data to send

	Byte
	Value

	1
	PI

	2-n
	Protocol data

NOTE:
The UICC can only respond with a Protocol Identifier corresponding to a protocol where the UICC can initiate communication, such as Ethernet. The UICC cannot answer with, for example, a mass storage Protocol Identifier and data since the mass storage protocol is a master-slave protocol which does not allow the UICC to initiate communication.
6.2
Supported protocols

The terminal shall send this message to indicate the supported PIs (including the control code PI). The UICC shall respond with the subset of the PIs indicated by the terminal which are also supported by the UICC.

Table 6.5 Supported protocols command and response
	Byte
	Value

	1
	PI='FE'

	2
	'02'

	3-(n+2)
	Array of supported PIs in ascending order.

	(n+3)-(n+4)
	CRC

7
T=11 APDU transport protocol

This section describes how APDUs defined in TS 31.101 [1] are transferred on the multi-protocol interface specified in the present document. The T=11 protocol follows the procedures and timings as defined for T=1 in TS 31.101 [1], with the exceptions specified in the present document. Bytes in a multiple byte field are transmitted with the most significant byte first.

7.1
T=11 protocol structure

A T=11 protocol block consist of a prologue, information and epilogue field. The prologue and the epilogue fields are mandatory where as the information field is optional and is depending upon what block type is sent. The T=11 defines three different block types.

· I-Block

· S-Block

· R-Block

The use of the different blocks is specified in TS 31.101 [1]. The structure of the T=11 protocol block is shown below.

[image: image14.emf]PIPCBLength of INF fieldInformation field 0-254 bytesCRC 2 bytes

Prologue fieldInformation fieldPrologue field

Figure 7.1 T=11 protocol block structure

7.1.1
Prologue field

The prologue field is mandatory and consists of three bytes, the PI, PCB and Length of INF field.

The PI byte corresponds to the NAD byte defined in the T=1 protocol. The PI for the T=11 protocol is defined in Table 4.1. The PI for the T=11 protocol has the same value as the defined for the NAD for T=1 in TS 31.101 [1]. As there is no NAD byte in the T=11 protocol it is not possible to address different logical destinations with the T=11 protocol.

The PCB byte is used according to what is specified for T=1 in TS 31.101 [1].

The length of INF field contains the length of the data in the information field. The length is between 0-254 bytes. The value '00' indicates that the information field is not present. The value 'FF' is reserved for future use.

7.1.2
Information field

For the content of the information field see TS 31.101 [1].

7.1.2.1
Information field size

The maximum information field/receive buffer, size for the terminal, IFSD, UICC, IFSC, and the negotiation procedure for the T=1 protocol is specified in TS 31.101 [1]. For the T=11 protocol that uses the Terminal-UICC interface specified in the present document the receive buffer size is set to the maximum value for the T=1 protocol, i.e. 254 bytes. Therefore there is no need to invoke the negotiation procedure defined for the T=1 protocol in TS 31.101 [1]. The information field size is indicated in TAi+1 for the T=1 protocol as the IFSC and IFSD are set to the maximum value TAi+1 shall not be present in the ATR following the indication of T=11 in TDi.

7.1.3
Epilogue field

The epilogue field contains a 2 byte CRC that is used for detecting possible errors in the data transmission. The CRC generation polynomial, defined in ITU-T V.41 [5], is:

G(x) = x16+x12+x5+1
7.2
Character and block timing

For the purpose of timing calculations 1 etu for the T=11 protocol is 1 data clock, see figure 4.5.

1 etu = Tclk
7.2.1
Character Guard and Waiting time

The multi-protocol interface defined in the present document sends consecutive characters in a block without any character waiting time or character guard time as specified for the T=1 protocol in TS 31.101. The T=11 protocol does not have any character waiting time (CWT) or character guard time (CGT) as defined for the T=1 protocol in TS 31.101 [1].

7.2.2
Block Waiting time

The block waiting time (BWT) is the maximum time between the leading edge of the last characters received by the UICC and the first character sent by the UICC. The block waiting time can be used to detect an unresponsive UICC. The procedures related to an unresponsive (mute) UICC are defined in TS 31.101 [1]. The block waiting time integer (BWI) is coded on bits b8 to b5 in the TB character following the indication of T=11. The block waiting time is calculated using the formula;

BWT = 9 + 2BWI etu

The default value of BWI is 4. The value 'F' is reserved for future use. Bits b4-b1 in TB are set to RFU and shall not be interpreted by the terminal as a parameter related to the APDU transfer on the interface specified in the present document. Bits b4-b1 may be defined in the future for other purposes related to protocols supported on the interface defined in the present document. A terminal that does not support functionality defined on these bits shall ignore them and in a PPS procedure these bits shall be set to '0'.

7.2.3
Block guard time

The block guard time (BGT) is the minimum time between the leading edge of two characters sent in opposite direction. The minimum delay shall be 22 etu. For the definition see TS 31.101 [1].

7.2.4
Error handling for T=11
The error handling for the T=11 protocol follows the error handling for the T=1 protocol as described in TS 31.101 [1], except that as the T=11 protocol contains a 2 byte CRC but has no parity bits, CRC errors in T=11 should be handled like parity errors in T=1.
7.3
Proactive command pending indication as answer to polling
If the terminal sends a Control code PI followed by a Polling control byte, the UICC is allowed to respond with a response APDU indicating the availability of a pending proactive command. The UICC indicates this by responding to the Polling control code with a protocol identifier corresponding to data coded as in the T=1 protocol followed by the status words indicating a pending proactive command ('91 XX').

8
USB data packet transfer

This section describes how USB packets as defined in the USB 2.0 Specification [2] are transported on the multi-protocol interface specified in the present document. Protocol and procedures specific to the USB physical interface as defined in USB 2.0 specification [2] do not apply to the transportation of USB packets on the multi-protocol interface defined in this document, e.g. bit stuffing, synchronisation pattern.

8.1
USB interface characteristics mapping

The fixed speeds of the USB interface allows for the use of time based transmission windows like frames and microframes. The amount of data that can be transported in a frame or microframe depends on the physical speed of the interface. A frame on the USB interface is defined to be 1 ms in time, for the full speed interface this corresponds to a maximum of 1500 bytes, as defined in the USB 2.0 specification [2]. The USB interface supports different types of data transfers that have different priority on the interface. As an example the control transfer always has access to the interface in each frame. In order to create similar type of functionality on the multi-protocol interface defined in the present document where the actual physical transfer speed may vary due to the selected data clock, a maximum block length of 1500 bytes has been defined as a frame for USB type of data.

[image: image15.emf]P

I

:

U

S

B

USB Packet

P

I

:

U

S

B

USB Packet

P

I

:

U

S

B

USB Packet

E

O

B

E

O

B

E

O

B

E

O

F

Frame

Figure 8.1 Definition of a frame on the multi-protocol interface for USB type data

As a frame is defined as a maximum of 1500 bytes, a consecutive transmission of USB packets is limited on the multi-protocol interface to this value. After the transmission of at most 1500 bytes, including the PI(s), EOB(s) and the EOF, an EOF shall be transmitted. If the USB type data transmission is less than a frame an EOF is transmitted at the end of the data transmission.

In order to synchronize the transmission on the USB interface as specified in USB 2.0 [2] the terminal transmits a Start Of Frame token, SOF, at the start of a transmission establishment. This SOF token is followed by data transmissions of various types and at the end an EOF is sent. As the multi-protocol interface defined in the present document is a synchronous interface the use of the SOF is not needed, the communication start is defined by starting the data clock and by sending the PI. Therefore the start of a USB type data transfer on the multi-protocol interface is indicated by the PI indicating "USB data" sent on the interface. The USB data transmission consists of packets. Each packet starts with a synchronisation pattern, SYNC, as defined in the USB 2.0 [1] specification. The SYNC pattern defined in the USB 2.0 specification [2] corresponds on the multi-protocol interface to the protocol identifier. The rest of the data sent as USB type data on the multi-protocol interface is in accordance with the USB 2.0 specification [2]. A USB packet ends with an End Of Packet, EOP. The end of packet is indicated on the multi-protocol interface by an EOB.

The terminal indicates EOF to the UICC by sending the USB PI followed by an EOB. A USB type data transaction on the multi-protocol interface starts with the transmission of the first PI indicating USB data transfer and ends with the transmission of the EOF. The EOF is sent after the EOP in the last packet to be transmitted.

8.1.1
USB data coding

On the physical USB interface as defined in the USB 2.0 [2] specification the data sent on the interface is coded as NRZ-I. This coding is not used on the USB data sent on the multi-protocol interface defined in the present document. The characteristics of the multi-protocol interface defined in the present document do not require this encoding to be used.

8.1.2
USB Suspend and resume

In order for a USB device to be able to draw power the USB host must send a SOF token at regular intervals. If the host stops sending SOF the USB device must enter the suspend mode and reduce its power consumption. A terminal that communicates with a UICC using the USB data format on the interface specified in the present document does not send a SOF on the interface in order to allow the UICC to consume power when there is no activity on the interface. The presence of a clock on C3, as defined in TS 31.101 [1] is used to indicate to the UICC that it need not enter the suspend mode as defined for USB devices in USB 2.0 [2] specification. In order for the terminal to initiate a new communication using USB formatted data the clock on contact C3 is started as specified in TS 31.101 [1]. After the elapsed time defined in TS 31.101 the terminal can initiate communication on the interface.

8.2
Mapping of USB packets on the multi-protocol interface

As the multi-protocol interface uses a data transfer clock there is no need for the transmission of a dedicated synchronisation pattern. The synchronisation pattern defined for the USB interface is defined as the protocol identifier, PI, for USB format data as defined in table 4.1. Following the PI on the multi-protocol interface is the USB PID. The value of the PID is according to the USB 2.0 Specification [2]. The remaining data in the USB packet on the multi-protocol interface is in accordance with the PID. Bytes in a multiple byte field are sent with the least significant byte first on the interface, the byte order is as specified USB 2.0 [2].

The USB End Of Packet, EOP, is mapped to the multi-protocol EOB condition. The End Of Frame, EOF, is indicated by sending the USB PI followed by the EOP.

[image: image16]
Figure 8.2 USB data mapping on the multi-protocol interface

In order to initiate a new USB data type transfer on the multi-protocol interface a SOF packet must be sent on the multi-protocol interface.

During the USB type of data transfer starting with the SOF packet until the EOF frame indication no interleaving of data transmissions indicating other protocols, PIs, shall take place. The terminal shall terminate the USB type of data transmission by sending the EOF in order to send data using another protocol. If the USB data transmission was not completed the data transmission shall be split and an indication given that more data is available, as defined for splitting data over multiple frames in the USB 2.0 specification [2].

9
Ethernet frame transfer

This section describes how Ethernet frames as defined in IEEE 802.3 [3] specification are transported on the multi-protocol interface specified in the present document. Ethernet is a half- or full duplex collision detection access method. In this specification we consider only half duplex. In implementations based on this specification it is not necessary to implement the collision detection, since the communication in this specification is based on polling from the terminal, and there is no risk of collision.

9.1
Ethernet frame mapping

One Ethernet frame is sent as one data block. The maximum amount of payload data in one Ethernet frame is 1500 bytes.

[image: image17]
Figure 9.1 Definition of a frame on the multi-protocol interface for Ethernet type data

In order to synchronize the transmission on the Ethernet interface as specified in IEEE 802.3, the Ethernet frames starts with a 7 byte preamble field. The preamble field is followed by a fixed-value SFD (Start Frame Delimiter) field which indicates the start of a frame. As the multi-protocol interface is a synchronous interface, the preamble field is not needed and is therefore not sent. The protocol identifier, PI, of Ethernet protocol is chosen to be the Ethernet SFD, i.e. it has the value 'AB'.

[image: image18]
Figure 9.2. Ethernet frame format on the multi-protocol interface

The Ethernet specification 802.3 specifies padding and extension bytes as a possible part of the Ethernet frame, depending on the implementation details. In this specification there is no minimum size for the frame and neither padding bytes nor extension bytes are used.

Destination address and sender address are not needed in order to identify the sending and receiving interfaces. This specification does not require any specific use of these addresses, but in specific applications the address fields may be used to uniquely identify e.g. individual applications as senders or receivers of the data.

The FCS contains a 32 bit Cyclic Redundancy Check as defined in IEEE 802.3 with generating polynomial

G(x) = x32 + x26 + x23 + x22 + x16 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x2 + x + 1
When the terminal has received an Ethernet frame from the UICC, the terminal shall send a Polling control sequence to the UICC in order to allow the UICC to send the next frame. The Polling control sequence shall be sent as soon as possible if there are no higher priority activities pending, e.g. authentication.
10
Mass Storage Block Transfer

This section describes how data blocks for mass storage are transported on the multi-protocol interface. Data in the UICC are addressed and transferred as logical blocks, with the first logical block having the address 0. The payload data block length is negotiated between the terminal and the UICC, possible payload block lengths are 2n where n=6,..., 11. The default payload block length is 512 bytes corresponding to n=9. If no payload block length has been negotiated between terminal and UICC the default payload block length is used. Terminal and UICC shall support payload block lengths corresponding to n=6,...,10, while support of n=11 is optional.
The maximum possible length of a mass storage data block, including PI, is 2056 bytes, with a logical data block length of 2048=211.

 10.1
Mass Storage frame mapping

One mass storage frame is sent as one block on the interface, preceded by a Protocol Identifier and followed by an EOB. A frame contains a protocol header and may contain payload data; if the frame contains payload data it contains one logical data block.

A mass storage frame can be either a command frame or a response frame. The exact format of the frame depends on the command and is described in the following sections.

[image: image19]
Figure 10.1 Definition of a frame on the multi-protocol interface for Mass Storage type data

The first byte in the protocol header of a command frame is an instruction code. The following instruction codes are defined:

Table 10.1 Instruction codes

	Instruction code
	Instruction code value
	

	Capacity
	'01'
	Get total storage capacity of UICC

	Block length
	'02'
	Negotiate block length

	Read block
	'03'
	Read block

	Write block
	'04'
	Write block

The first byte in the protocol header of the response frame is a status byte. The following status bytes are defined:

Table 10.2 Status bytes

	Status byte
	Status byte value
	

	ACK
	'01'
	Command understood and performed successfully

	NACK
	'02'
	Command not understood.

	Resend
	'03'
	CRC error. Resend command.

	Address error
	'04'
	Address beyond bounds.

	Temporary problem
	'05'
	Temporary problem (e.g. card busy)

	Unspecified problem
	'06'
	Unspecified problem.

NOTE :
NACK is defined in order to allow future extensions of the set of instruction codes. If the UICC returns NACK, the terminal should conclude that this specific instruction is not supported by the UICC.

[image: image20]
Figure 10.2 Example of command frame structure for Write block command

10.1.1
Error detection

The last two bytes in any command frame or response frame is a 2 byte CRC which is used for detecting possible errors in the data transmission. The CRC generation polynomial, defined in ITU-T V.41 [5], is:

G(x) = x16+x12+x5+1
The CRC is used on header and payload data, starting from the Instruction code for command frames and from the Status byte for response frames. If the UICC detects a CRC error, it shall return an error response with status byte set to Resend='03', and in that case the terminal shall resend the command with identical content.

If the terminal detects a CRC error in a response from the UICC it shall resend the command with identical content.

If a command fails after three consecutive attempts, each time due to a CRC error detected in either terminal or UICC, it is up to the terminal to decide how to recover. The terminal may decide that the card has an unrecoverable error and decide to retry only after next electrical reset of the card.
10.1.2
Error response

In the case of error response messages (i.e. all status bytes except for ACK), the UICC responds with the following response structure:

Table 10.3 Error response frame

	Byte
	Value

	1
	Status

	2-3
	CRC

10.1.2
Memory Capacity

The capacity command is used for requesting the total storage capacity of the UICC. The UICC returns the presently used logical block size and the total amount of logical blocks. The logical block size is indicated in terms of n where the length of a logical block is 2n.

Table 10.4 Capacity command frame

	Byte
	Value

	1
	Ins='01'

	2-3
	CRC

Table 10.5 Capacity response frame
	Byte
	Value

	1
	Status='01'

	2
	n, where block length = 2n

	3-6
	Capacity (number of blocks)

	7-8
	CRC

10.1.3
Payload block length.

The block length command is used for negotiating the payload block length. If the terminal does not issue this command, the default payload block length is used.

The terminal issues the payload block length command, indicating the block length that it wishes to use. The payload block length is indicated in terms of n where the block length is 2n. If the UICC responds with the same block length, then this is the agreed block length.

If the UICC responds with a different payload block length than the one indicated by the terminal, then the terminal shall send a new Block length command. The terminal shall use either the block length value indicated by the UICC or the default block length in the second Payload block length command. The UICC shall accept the second payload block length command by returning the Payload block length response with the block length indicated by the terminal.

If the terminal detects a CRC error in the response from the UICC, it shall resend the Payload block length command with unchanged block length.

Table 10.6 Payload block length command frame
	Byte
	Value

	1
	Ins='02'

	2
	n, where block length = 2n

	3-4
	CRC

Table 10.7 Payload block length response frame
	Byte
	Value

	1
	Status='01'

	2
	m, where block length = 2m

	3-4
	CRC

10.1.4
Read block

The read block command is used for reading one logical data block from a given logical address on the UICC.

Table 10.8 Read block command frame

	Byte
	Value

	1
	Ins='03'

	2-5
	Logical block address

	6-7
	CRC

Table 10.9 Read block response frame
	Byte
	Value

	1
	Status='01'

	2-(2n+1)
	Data

	(2n+2)-(2n+3)
	CRC

10.1.5
Write block

The write block command is used for writing one logical data block to a given logical address on the UICC.

Table 10.8 Write block command frame

	Byte
	Value

	1
	Ins='04'

	2-5
	Logical block address

	6-(2n+5)
	Data

	(2n+6)-(2n+7)
	CRC

Table 10.9 Write block response frame
	Byte
	Value

	1
	Status='01'

	2-3
	CRC

Annex A (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

P

I

=

S

Y

N

C

USB Format Data

P

I

=

S

Y

N

C

USB Format Data

P

I

D

USB Format Data

E

O

B

=

E

O

P

E

O

B

=

E

O

P

E

O

B

=

E

O

P

E

O

F

P

I

D

P

I

D

P

I

=

S

Y

N

C

Ethernet frame

PI-Ethernet

EOB

source address

Ethernet payload Data

PI-Ethernet / SFD

dest. address

length / type

FCS

EOB

2n bytes

Data

4 bytes

Address

2 bytes

1 byte

CRC

Ins='04'

EOB

PI-mass storage

Mass Storage frame

PI='FE'

0-n bytes

Data

1 byte

I/O

2 bytes

1 byte

CRC

Control code

CLK on C6

GND

RFU

CLK

RST

VCC

RFU

C8

C4

C7

C3

C6

C2

C5

C1

_1221649025.doc

Warm Reset (Type 2 UICC)

Warm Reset (Type 2 UICC)

Warm Reset (Type 1 UICC)

 Warm Reset (Type 1 UICC)

Cold Reset

(Type 2 UICC)

PPS procedure

Cold Reset

(Type 1 UICC)

Negotiable Mode

Specific

Mode

Start of a

card session

